Introduction to

Algorithm Design and Analysis

[10] Union-Find

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University

https://ics.nju.edu.cn/~xjw/

INn the last class ...

® Hashing
e Basic idea
® Collision handling for hashing
e Closed address
e Open address
® Amortized analysis
* Array doubling
e Stack operations
e Binary counter

Union-Find

® Dynamic Equivalence Relation
e Examples
e Definitions
e Brute force implementations
® Disjoint Set
e Straightforward Union-Find
e \Weighted Union + Straightforward Find
 Weighted Union + Path-compressing Find

Minimum Spanning Tree

® Kruskal’s algorithm, greedy strategy:
e Select one edge
e With the minimum weight
* Not in the tree
e Evaluate this edge
 This edge will NOT result in a cycle
e Critical issue:
e How to know “NO CYCLE”?

Maze Generation

inlet

—

ﬂ

outlet

Select a wall to pull
down randomly

If i and j are in same
equivalence class, then
select another wall to
pull down.

Otherwise, joint the
two classes into one.

The maze is complete
when the inlet and
outlet are in one
equivalence class.

Black Pixels

® Maximum black pixel component

e Let a be the size of the component

® Color one pixel black

e How a changes?

* How to choose the pixel, to accelerate the change In

0

| (mm. | . |
| |H| (. |

[| |H] W |

EEE =N N
| | [mEee

[+ /MmN | W
[« M| W |
oM | | [X|H] |
[+ /Hmn . .

e|e]eMEMN W
o] M| (WM W
EEE EN N
llD%FDDD

[M | [
[I« [-
[[M[efe]e]eel]e)
|| - (] - |

(] | || -

[| || W] - |

mEE (..

| |H [mee
14

[M | (W)
[|« |
[|Mi[efefe]e]e]e]
| I[(-) - |
(| | | -
[| [X] W] - |
mEN |m -
| N mme
14

[+ /M | (W
[|H| W
o/m| | | |]]
+ /NN W |

(oo MMM |W
[o]e]e]« /MM |
B3I]
(]« - |WIWImIN

16

[« /MmN | W
+ || mEEN |
o/ml | | |]]|
[« |H/mm W W

o]e| /MMM W
(e]e]e]e /MM W
[+ |H|W - |WIW| |W
(o]« <l MMM

17

Jigsaw Puzzle

® Multiple pieces may be glued together

® From “one player” to “two players”

DO 7:28mm

e Each group can only
be moved in mutual
exclusive way

=
» How to decide the T
relation of “in the =i

same group”

Dynamic Equivalence
Relations

® Equivalence
* Reflexive, symmetric, transitive
* Equivalent classes forming a partition
® Dynamic equivalence relation
 Changing in the process of computation
* |S instruction: yes or no (in the same equivalence class)

* MAKE instruction: combining two equivalent classes, by
relating two unrelated elements, and influencing the
results of subsequent IS instructions.

e Starting as equality relation

Implementation:
How to Measure

® The number of basic operations for processing a
sequence of m MAKE and/or IS instructions on a set S
with n elements.

® An example: S={1, 2, 3, 4, 5}

. 0.
¢ 1.

[create] (11}, 12}, 13}, 14}, 19}}

1s2=4" NO
.18 3=57? NO
. MAKE 3=5. {1}, 12}, {3, 9}, {4}}
. MAKE 2=9. {1}, {2, 3, 5}, {4}}
.15 2=37 YES
. MAKE 4=1. {1, 4}, {2, 3, 5}}
15 2=47 NO

Union-Find based
Implementation

® The maze problem

e Randomly delete a wall and union two cells

e Loop until you find the inlet and outlet are in one equivalent class
® The Kruskal algorithm

 Find whether u and v are in the same equivalent class

* If not, add the edge and union the two nodes
® The black pixels problem
 Find two black pixels not in the same group

e How the union will iIncrease o

Implementation: Choices

® Matrix (relation matrix)

e Space in O(n?), and worst-case cost in Q(mn) (mainly for
row copying for MAKE/union)

® Array (for equivalence class ID)

e Space in ©O(n), and worst-case cost in Q(mn) (mainly for
search and change for MAKE/union)

® Forest of rooted trees

* A collection of disjoint sets, supporting Union and Find
operations

* Not necessary to traverse all the elements in one set

Union-Find ADT

® Constructor: Union-Find create(int n)

e sets = create(n) refers to a newly created
group of sets {1}, {2}, ..., {n} (n singletons)

® Access Function: int find(UnionFind sets, e)
e find(sets, e) = <e>

® Manipulation Procedures
e void makeSet(UnionFind sets, int)

e void union(UnionFind sets, int s, int t)

Using Rooted Iree

* IS si=s;¢:
o t=tind(s));
o u=tind(s));
o (t==u)?

* MAKEs.=s
o t=tind(s.);
o u=tind(s));

o union(t,u);

]’o

implementation by inTree

create(n): sequence of makeNode

@@ @ @@

@\ union(t,u)
r %
ﬁnd(sj)—& /Qi
(&)

setParent(z,u)
parent*(s;)

Union-Find Program

® A union-find program of length m

* |s (a create(n) operation followed by) a sequence
of m union and/or find operations in any order

® A union-find program is considered an input
* The object on which the analysis is conducted
® The measure: number of accesses to the parent

e assignments: for union operations

link operation

e |ookups: for find operations

Worst-case Analysis for
Union-Find Program

® Assuming each lookup/assignment take O(1)

® Each makeSet/union does one assignment, and each find
does d+1 lookups, where d is the depth of the node.

1. Union(1,2) The sequence of Union

2. Union(2,3) makes a chain of length n-1,
which 1s the tree with the
largest height

n-1. Union(n-1,n)
1. Fin(.i(l) operations done:
' n+(n-1)+(m-n+1)n ® (mn)

m. Find(1)
Find(1) needs n

Example - array lookups

Weighted Union:
for Short Trees

® Weighted union (wUnion)

e always have the tree with fewer nodes as subtree

To keep the Union valid, @ |
each Union operation is /' '\NOt R 25¢
replaced by: @

t=find(/); @

u=find(j);

union(t,u) @

\ Tree made by wUnion

The order of (t,u)
satisfying the
requirement n+3(n-1)+2(m-n+1)

Cost for the program:

Upper Bound of Tree Height

® After any sequence of Union instructions, implemented
by wUnion, any tree that has k nodes will have height at
most | logk |

® Proof by induction on k:

* base case: k=1, the height is 0

o : : P T+ To
by inductive hypothesis: . Nodes e nodes
e hi< Llgkil, ho< Ligke] height h+ height ha

® p— p— T
h=max(h1,h2+1) k=k1+k> < nodes

e if h=h1, hi< [Igks | < LIgk | height h

o if h=ho+1, note: ko<k/2, so ho+1< Ligke | +1< LIgk|

Upper Bound for
Union-Find Program

® A Union-Find program of size m, on a set of n elements,
performs O(n+mlogn) link operations in the worst case if
wUnion and straight find are used

® Proof:

* At most n-1 wUnion can be done, building a tree with
height at most |logn],

 Then, each find costs at most | logn_| +1.

* Each union costs in O(1), so, the upper bound on the cost
of any combination of m wUnion/find operations is the cost
of m find operations, that is m(|.logn_] +1)eO (n+mlogn)

* There do exist programs requiring {(n+(m-n)logn) steps.

Path Compression

Path compressed

-
\

Change their

parents to the root

Challenges for the Analysis

Path compressed

cFind does twice
as many link

operations as the

find does for a Ut cFind will traverse
given node in a " shorter paths

given tree

Analysis: the Basic Idea

® cFind may be an expensive operation

* in the case that find(i) is executed and the node
| has great depth.

® However, such cFind can be executed only for
limited times

e Path compressions depends on previous unions

® So, amortized analysis applies

Co-Strength of
wUnion and ckind

® O((n+mjlog*(n)) ® What’s log*(n)?
* Link operations for o pefine the function H as
a Union-Find following: (Ackermann)
program of length H(0) = 1
m on a set of n -
elements is in the H(i) = 2H=D
worst case. Then, log*() for j=1 is
defined as:

* Implemented with . . .
wUnion and cFind log*(j) = min{k|H(k) > j}

A function Growing
Extremely Slowly

® Function H: ® Function log-star

HO) =1 log*(j) is defined as the least i

N AH(—1) , such that:
H@) =2 e o H(i) > j forj>0
Thatis: H(k) = 2%
® log-star grows

Note: extremely slowly
H grows extremely fast: . log * (n) _
H(4) = 2'° = 65536 n—oo logPn
H(5) = 202336 p is any fixed nonnegative constant

For any x: 216<x<265536-1 |og*(X)=5

Definitions with a
Union-Find Program P

® Forest F: the forest constructed by the
sequence of union instructions in P, assuming:

e wUnion is used;
e the finds in the P are ignored

® Height of a node v In any tree: the height of the

subtree rooted at v
Note: cFind changes

® Rank of v: the height of vin F [Fiiiiilses

but the rank for any
node is invariable.

Constraints on Ranks in F

® The upper bound of the number of nodes with rank
r(r=0) is n/2r

e Remember that the height of the tree built by
wUnion is at most | logn_] , which means the

subtree of height r has at least 2" nodes.
 The subtrees with root at rank r are disjoint.

® There are at most [logn] different ranks.

 There are altogether n elements in S, that is, n nodes
in F.

Increasing Sequence of
Ranks

® The ranks of the nodes on a path from a leaf to
a root of a tree in F form a strictly increasing
seguence.

® When a cFind operation changes the parent of
a node, the new parent has higher rank than
the old parent of that node.

 Note: the new parent was an ancestor of the
previous parent.

Grouping Nodes by Ranks

® Node ves;(i=0) iff. log*(1+rank of v)=i

 which means that: if node v is in group I, then
rv=H(i)-1, but not in group with smaller labels

® So,
_ . Group 5 exists only
e Group 0: all nodes with rank O when n is at least
e Group 1: all nodes with rank 265536, What is that?

e Group 2: all nodes with rank.2-or 3

e Group 3: all nodes wititits rank in [4, 19]

. Grou_p 4¢/3‘ aodes with its rank in [16, 65535]
‘Group 5: 1all nodes with its rank in [65535, ?77]

e W

Very Few Groups

® Node veS; (i=0) iff. It 1Og*(n+1):k9 then

log*(1 + rank of v)=i

® Upper bound of the ok
number of distinct node k2’s 9 2
groups is log*(n+1)
2

* The rank of any node o >n-+1

In F is at

most Llogn| ,sothe ——mmmmTmmmmmmmmommooomoooo—o -

largest group index is 3 2
log*(1+ Llogn_])=log* (k1) 2 ?\/;2
([logn+1 1) =

log*(n+1)-1 2

>log(n

I)

Amortized Cost of Union-
Find

® Amortized Equation Recalled
e amortized cost = actual cost + accounting cost

® The operations to be considered:

e n makeSets

e m union & find (with at most n-1 unions)

One Execution of cFind(wo)

/‘ Root=w, Only when k=0,1, there
Groups 1n a strict o is no parent change
increasing order Wil '

.\. For one cFind operation, the
Group = actual cost 1s 2k Not 2(k+1)
\ \\\\\
Boundary N
/. Wi e . .
® ~_ | Accounting cost 1s -2 for each
IR W~ | pairof (w, w)) for the the 2
NOL@' the | nodes in ths same group only,
ranks are not \ w """ Iwhich we call a withdrawal.
consecutive N
generally O

Amortizing Scheme for
wUnion-ckind

® makeSet
e Accounting cost is 4log*(n+1)
* So, the amortized cost is 1+4log*(n+1)
® wUnion
* Accounting costis 0
* So the amortized cost is 1
® cFind
* Accounting cost is describes as in the previous page.

 Amortized cost < 2k-2((k-1)-(log*(n+1)-1))=2log*(n+1)
(Compare with the worst case cost of cFind, 2logn)

Number of withdrawal

Validation of the
Amortizing Scheme

® We must be assure that the sum of the
accounting costs is never negative.

® The sum of the negative charges, incurred by
cFind, does not exceed 4nlog*(n+1)

* We prove this by showing that at most
2nlog*(n+1) withdrawals on nodes occur
during all the executions of cFind.

Key ldea In the Derivation

® For any node, the number of withdrawal will be less
than the number of different ranks in the group it
belongs to

* When a cFind changes the parent of a node, the new
parent is always has higher rank than the old parent.

e Once a node is assigned a new parent in a higher
group, no more negative amortized cost will incurred
for it again.

® The number of different ranks is limited within a group.

Derivation

® Bounding the number of withdrawals

The number of withdrawals from all w € S'is:

log™ (n+1)— 1/ -

-
E [H(7) pnumber of nodes in group 7)
\
i=0 —
The number of nodes in group 7 is at most:

H(7)—1

2n
Z —2H1 1)Z2J 2H1 1) H(Z)

r=H(i—1) 7=0

So.

log™ (n+1)—

Z H();()—%Llog (n+1)

Conclusion

® The number of link operations done by a
Union-Find program implemented with wUnion
and cFind, of length m on a set of n elements
is in O((n+m)log*(n)) in the worst case.

e Note: since the sum of accounting cost is
never negative, the actual cost is always not
less than amortized cost. The upper bound of
amortized cost is: (n+m)(1+4log*(n+1))

Thank youl!
Q&A

