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In the last class …
• Hashing 
• Basic idea


• Collision handling for hashing 
• Closed address

• Open address


• Amortized analysis 
• Array doubling

• Stack operations

• Binary counter



Union-Find
• Dynamic Equivalence Relation 

• Examples


• Definitions


• Brute force implementations


• Disjoint Set 

• Straightforward Union-Find


• Weighted Union + Straightforward Find


• Weighted Union + Path-compressing Find



Minimum Spanning Tree
• Kruskal’s algorithm, greedy strategy: 

• Select one edge


• With the minimum weight


• Not in the tree


• Evaluate this edge


• This edge will NOT result in a cycle


• Critical issue:


• How to know “NO CYCLE”?



Maze Generation



Black Pixels
• Maximum black pixel component 

• Let ⍺ be the size of the component


• Color one pixel black 

• How ⍺ changes?


• How to choose the pixel, to accelerate the change in 
⍺



Jigsaw Puzzle
• Multiple pieces may be glued together 

• From “one player” to “two players”

• Each group can only 
be moved in mutual 
exclusive way


• How to decide the 
relation of “in the 
same group”



Dynamic Equivalence 
Relations

• Equivalence 

• Reflexive, symmetric, transitive


• Equivalent classes forming a partition


• Dynamic equivalence relation 

• Changing in the process of computation


• IS instruction: yes or no (in the same equivalence class)


• MAKE instruction: combining two equivalent classes, by 
relating two unrelated elements, and influencing the 
results of subsequent IS instructions.


• Starting as equality relation



Implementation:

How to Measure

• The number of basic operations for processing a 
sequence of m MAKE and/or IS instructions on a set S 
with n elements. 

• An example: S={1, 2, 3, 4, 5} 
• 0. [create] {{1}, {2}, {3}, {4}, {5}} 


• 1. IS 2≡4?

• 2. IS 3≡5?

• 3. MAKE 3≡5.                          {{1}, {2}, {3, 5}, {4}}

• 4. MAKE 2≡5.                          {{1}, {2, 3, 5}, {4}}

• 5. IS 2≡3?

• 6. MAKE 4≡1.                          {{1, 4}, {2, 3, 5}}


• 7. IS 2≡4?

NO
NO

YES

NO



Union-Find based 
Implementation

• The maze problem 

• Randomly delete a wall and union two cells


• Loop until you find the inlet and outlet are in one equivalent class


• The Kruskal algorithm 

• Find whether u and v are in the same equivalent class


• If not, add the edge and union the two nodes


• The black pixels problem 

• Find two black pixels not in the same group


• How the union will increase ⍺



Implementation: Choices
• Matrix (relation matrix) 

• Space in Θ(n2), and worst-case cost in Ω(mn) (mainly for 
row copying for MAKE/union)


• Array (for equivalence class ID) 

• Space in Θ(n), and worst-case cost in Ω(mn) (mainly for 
search and change for MAKE/union)


• Forest of rooted trees 

• A collection of disjoint sets, supporting Union and Find 
operations


• Not necessary to traverse all the elements in one set



Union-Find ADT
• Constructor: Union-Find create(int n) 

• sets = create(n) refers to a newly created 
group of sets {1}, {2}, …, {n} (n singletons)


• Access Function: int find(UnionFind sets, e) 

• find(sets, e) = <e>


• Manipulation Procedures 

• void makeSet(UnionFind sets, int e)


• void union(UnionFind sets, int s, int t)



Using Rooted Tree



Union-Find Program
• A union-find program of length m 

• is (a create(n) operation followed by) a sequence 
of m union and/or find operations in any order


• A union-find program is considered an input 

• The object on which the analysis is conducted


• The measure: number of accesses to the parent 

• assignments: for union operations


• lookups: for find operations
link operation



Worst-case Analysis for 
Union-Find Program

• Assuming each lookup/assignment take O(1) 

• Each makeSet/union does one assignment, and each find 
does d+1 lookups, where d is the depth of the node.



Weighted Union:

for Short Trees

• Weighted union (wUnion) 

• always have the tree with fewer nodes as subtree



Upper Bound of Tree Height
• After any sequence of Union instructions, implemented 

by wUnion, any tree that has k nodes will have height at 
most ⎣logk⎦ 

• Proof by induction on k: 

• base case: k=1, the height is 0


• by inductive hypothesis:

• h1≤⎣lgk1⎦, h2≤⎣lgk2⎦


• h=max(h1,h2+1) k=k1+k2


• if h=h1, h1≤⎣lgk1⎦≤⎣lgk⎦


• if h=h2+1, note: k2≤k/2, so h2+1≤⎣lgk2⎦+1≤⎣lgk⎦
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Upper Bound for 

Union-Find Program

• A Union-Find program of size m, on a set of n elements, 
performs O(n+mlogn) link operations in the worst case if 
wUnion and straight find are used  

• Proof: 
• At most n‐1 wUnion can be done, building a tree with 

height at most ⎣logn⎦,


• Then, each find costs at most⎣logn⎦+1. 


• Each union costs in O(1), so, the upper bound on the cost 
of any combination of m wUnion/find operations is the cost 
of m find operations, that is m(⎣logn⎦+1)∈O (n+mlogn) 


• There do exist programs requiring Ω(n+(m‐n)logn) steps.



Path Compression

Path compressed

Change their 
parents to the root

x

w

v xv w



Challenges for the Analysis

Path compressed

cFind does twice 
as many link 
operations as the 
find does for a 
given node in a 
given tree

x

w

v xv w

cFind will traverse 
shorter pathsbut…



Analysis: the Basic Idea
• cFind may be an expensive operation 

• in the case that find(i) is executed and the node 
i has great depth.


• However, such cFind can be executed only for 
limited times 

• Path compressions depends on previous unions


• So, amortized analysis applies



Co-Strength of 

wUnion and cFind

• O((n+m)log*(n)) 

• Link operations for 
a Union-Find 
program of length 
m on a set of n 
elements is in the 
worst case.


• Implemented with 
wUnion and cFind

• What’s log*(n)? 

• Define the function H as 
following: (Ackermann)


• Then, log*(j) for j≥1 is 
defined as:

H(0) = 1
H(i) = 2H(i−1)

log*( j) = min{k |H(k) ≥ j}



A function Growing 
Extremely Slowly

• Function H:
H(0) = 1

H(i) = 2H(i−1)

That is: H(k) = 22..
..

..
2

k 2’s

Note:

H grows extremely fast:

H(4) = 216 = 65536
H(5) = 265536

• Function log-star
log*(j) is defined as the least i 
such that:
H(i) ≥ j for j>0

• log-star grows 
extremely slowly

p is any fixed nonnegative constant

For any x: 216≤x≤265536-1, log*(x)=5

lim
n→∞

log * (n)
log(p)n

= 0



Definitions with a 

Union-Find Program P

• Forest F: the forest constructed by the 
sequence of union instructions in P, assuming: 

• wUnion is used;


• the finds in the P are ignored


• Height of a node v in any tree: the height of the 
subtree rooted at v 

• Rank of v: the height of v in F
Note: cFind changes 
the height of a node, 
but the rank for any 
node is invariable.



Constraints on Ranks in F
• The upper bound of the number of nodes with rank 

r(r≥0) is n/2r 

• Remember that the height of the tree built by 
wUnion is at most⎣logn⎦, which means the 
subtree of height r has at least 2r nodes.


• The subtrees with root at rank r are disjoint.


• There are at most⎣logn⎦different ranks. 

• There are altogether n elements in S, that is, n nodes 
in F. 



Increasing Sequence of 
Ranks

• The ranks of the nodes on a path from a leaf to 
a root of a tree in F form a strictly increasing 
sequence. 

• When a cFind operation changes the parent of 
a node, the new parent has higher rank than 
the old parent of that node. 

• Note: the new parent was an ancestor of the 
previous parent.



Grouping Nodes by Ranks
• Node v∈si (i≥0) iff. log*(1+rank of v)=i 
• which means that: if node v is in group i, then 

rv≤H(i)-1, but not in group with smaller labels

• So, 
• Group 0: all nodes with rank 0

• Group 1: all nodes with rank 1

• Group 2: all nodes with rank 2 or 3

• Group 3: all nodes with its rank in [4, 15]

• Group 4: all nodes with its rank in [16, 65535]

• Group 5: all nodes with its rank in [65535, ???]

Group 5 exists only 
when n is at least 

265536. What is that?



Very Few Groups
• Node v∈Si (i≥0) iff. 

• Upper bound of the 
number of distinct node 
groups is log*(n+1)  

• The rank of any node 
in F is at 
most⎣logn⎦, so the 
largest group index is 
log*(1+⎣logn⎦)=log*
(⎡logn+1⎤) = 
log*(n+1)‐1 

log*(1 + rank of v)=i



Amortized Cost of Union-
Find

• Amortized Equation Recalled 

• amortized cost = actual cost + accounting cost


• The operations to be considered: 

• n makeSets


• m union & find (with at most n‐1 unions)



One Execution of cFind(w0)



Amortizing Scheme for 
wUnion-cFind

• makeSet 

• Accounting cost is 4log*(n+1)


• So, the amortized cost is 1+4log*(n+1) 


• wUnion 

• Accounting cost is 0


• So the amortized cost is 1 


• cFind 

• Accounting cost is describes as in the previous page. 


• Amortized cost ≤ 2k‐2((k‐1)‐(log*(n+1)‐1))=2log*(n+1) 
(Compare with the worst case cost of cFind, 2logn) 

Number of withdrawal



Validation of the 

Amortizing Scheme

• We must be assure that the sum of the 
accounting costs is never negative.  

• The sum of the negative charges, incurred by 
cFind, does not exceed 4nlog*(n+1)  

• We prove this by showing that at most 
2nlog*(n+1) withdrawals on nodes occur 
during all the executions of cFind.



Key Idea in the Derivation
• For any node, the number of withdrawal will be less 

than the number of different ranks in the group it 
belongs to 

• When a cFind changes the parent of a node, the new 
parent is always has higher rank than the old parent. 


• Once a node is assigned a new parent in a higher 
group, no more negative amortized cost will incurred 
for it again. 


• The number of different ranks is limited within a group. 



Derivation
• Bounding the number of withdrawals



Conclusion
• The number of link operations done by a 

Union-Find program  implemented with wUnion 
and cFind, of length m on a set of n elements 
is in O((n+m)log*(n)) in the worst case. 

• Note: since the sum of accounting cost is 
never negative, the actual cost is always not 
less than amortized cost. The upper bound of 
amortized cost is: (n+m)(1+4log*(n+1)) 


•



Thank you!

Q & A


