
Introduction to

Algorithm Design and Analysis

[10] Union-Find

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …
• Hashing
• Basic idea

• Collision handling for hashing
• Closed address

• Open address

• Amortized analysis
• Array doubling

• Stack operations

• Binary counter

Union-Find
• Dynamic Equivalence Relation

• Examples

• Definitions

• Brute force implementations

• Disjoint Set

• Straightforward Union-Find

• Weighted Union + Straightforward Find

• Weighted Union + Path-compressing Find

Minimum Spanning Tree
• Kruskal’s algorithm, greedy strategy:

• Select one edge

• With the minimum weight

• Not in the tree

• Evaluate this edge

• This edge will NOT result in a cycle

• Critical issue:

• How to know “NO CYCLE”?

Maze Generation

Black Pixels
• Maximum black pixel component

• Let ⍺ be the size of the component

• Color one pixel black

• How ⍺ changes?

• How to choose the pixel, to accelerate the change in
⍺

Jigsaw Puzzle
• Multiple pieces may be glued together

• From “one player” to “two players”

• Each group can only
be moved in mutual
exclusive way

• How to decide the
relation of “in the
same group”

Dynamic Equivalence
Relations

• Equivalence

• Reflexive, symmetric, transitive

• Equivalent classes forming a partition

• Dynamic equivalence relation

• Changing in the process of computation

• IS instruction: yes or no (in the same equivalence class)

• MAKE instruction: combining two equivalent classes, by
relating two unrelated elements, and influencing the
results of subsequent IS instructions.

• Starting as equality relation

Implementation:

How to Measure

• The number of basic operations for processing a
sequence of m MAKE and/or IS instructions on a set S
with n elements.

• An example: S={1, 2, 3, 4, 5}
• 0. [create] {{1}, {2}, {3}, {4}, {5}}

• 1. IS 2≡4?

• 2. IS 3≡5?

• 3. MAKE 3≡5. {{1}, {2}, {3, 5}, {4}}

• 4. MAKE 2≡5. {{1}, {2, 3, 5}, {4}}

• 5. IS 2≡3?

• 6. MAKE 4≡1. {{1, 4}, {2, 3, 5}}

• 7. IS 2≡4?

NO
NO

YES

NO

Union-Find based
Implementation

• The maze problem

• Randomly delete a wall and union two cells

• Loop until you find the inlet and outlet are in one equivalent class

• The Kruskal algorithm

• Find whether u and v are in the same equivalent class

• If not, add the edge and union the two nodes

• The black pixels problem

• Find two black pixels not in the same group

• How the union will increase ⍺

Implementation: Choices
• Matrix (relation matrix)

• Space in Θ(n2), and worst-case cost in Ω(mn) (mainly for
row copying for MAKE/union)

• Array (for equivalence class ID)

• Space in Θ(n), and worst-case cost in Ω(mn) (mainly for
search and change for MAKE/union)

• Forest of rooted trees

• A collection of disjoint sets, supporting Union and Find
operations

• Not necessary to traverse all the elements in one set

Union-Find ADT
• Constructor: Union-Find create(int n)

• sets = create(n) refers to a newly created
group of sets {1}, {2}, …, {n} (n singletons)

• Access Function: int find(UnionFind sets, e)

• find(sets, e) = <e>

• Manipulation Procedures

• void makeSet(UnionFind sets, int e)

• void union(UnionFind sets, int s, int t)

Using Rooted Tree

Union-Find Program
• A union-find program of length m

• is (a create(n) operation followed by) a sequence
of m union and/or find operations in any order

• A union-find program is considered an input

• The object on which the analysis is conducted

• The measure: number of accesses to the parent

• assignments: for union operations

• lookups: for find operations
link operation

Worst-case Analysis for
Union-Find Program

• Assuming each lookup/assignment take O(1)

• Each makeSet/union does one assignment, and each find
does d+1 lookups, where d is the depth of the node.

Weighted Union:

for Short Trees

• Weighted union (wUnion)

• always have the tree with fewer nodes as subtree

Upper Bound of Tree Height
• After any sequence of Union instructions, implemented

by wUnion, any tree that has k nodes will have height at
most ⎣logk⎦

• Proof by induction on k:

• base case: k=1, the height is 0

• by inductive hypothesis:

• h1≤⎣lgk1⎦, h2≤⎣lgk2⎦

• h=max(h1,h2+1) k=k1+k2

• if h=h1, h1≤⎣lgk1⎦≤⎣lgk⎦

• if h=h2+1, note: k2≤k/2, so h2+1≤⎣lgk2⎦+1≤⎣lgk⎦

t

u
T1

k1 nodes

height h1

T2

k2 nodes

height h2

T

k nodes

height h

Upper Bound for

Union-Find Program

• A Union-Find program of size m, on a set of n elements,
performs O(n+mlogn) link operations in the worst case if
wUnion and straight find are used

• Proof:
• At most n‐1 wUnion can be done, building a tree with

height at most ⎣logn⎦,

• Then, each find costs at most⎣logn⎦+1.

• Each union costs in O(1), so, the upper bound on the cost
of any combination of m wUnion/find operations is the cost
of m find operations, that is m(⎣logn⎦+1)∈O (n+mlogn)

• There do exist programs requiring Ω(n+(m‐n)logn) steps.

Path Compression

Path compressed

Change their
parents to the root

x

w

v xv w

Challenges for the Analysis

Path compressed

cFind does twice
as many link
operations as the
find does for a
given node in a
given tree

x

w

v xv w

cFind will traverse
shorter pathsbut…

Analysis: the Basic Idea
• cFind may be an expensive operation

• in the case that find(i) is executed and the node
i has great depth.

• However, such cFind can be executed only for
limited times

• Path compressions depends on previous unions

• So, amortized analysis applies

Co-Strength of

wUnion and cFind

• O((n+m)log*(n))

• Link operations for
a Union-Find
program of length
m on a set of n
elements is in the
worst case.

• Implemented with
wUnion and cFind

• What’s log*(n)?

• Define the function H as
following: (Ackermann)

• Then, log*(j) for j≥1 is
defined as:

H(0) = 1
H(i) = 2H(i−1)

log*(j) = min{k |H(k) ≥ j}

A function Growing
Extremely Slowly

• Function H:
H(0) = 1

H(i) = 2H(i−1)

That is: H(k) = 22..
..

..
2

k 2’s

Note:

H grows extremely fast:

H(4) = 216 = 65536
H(5) = 265536

• Function log-star
log*(j) is defined as the least i
such that:
H(i) ≥ j for j>0

• log-star grows
extremely slowly

p is any fixed nonnegative constant

For any x: 216≤x≤265536-1, log*(x)=5

lim
n→∞

log * (n)
log(p)n

= 0

Definitions with a

Union-Find Program P

• Forest F: the forest constructed by the
sequence of union instructions in P, assuming:

• wUnion is used;

• the finds in the P are ignored

• Height of a node v in any tree: the height of the
subtree rooted at v

• Rank of v: the height of v in F
Note: cFind changes
the height of a node,
but the rank for any
node is invariable.

Constraints on Ranks in F
• The upper bound of the number of nodes with rank

r(r≥0) is n/2r

• Remember that the height of the tree built by
wUnion is at most⎣logn⎦, which means the
subtree of height r has at least 2r nodes.

• The subtrees with root at rank r are disjoint.

• There are at most⎣logn⎦different ranks.

• There are altogether n elements in S, that is, n nodes
in F.

Increasing Sequence of
Ranks

• The ranks of the nodes on a path from a leaf to
a root of a tree in F form a strictly increasing
sequence.

• When a cFind operation changes the parent of
a node, the new parent has higher rank than
the old parent of that node.

• Note: the new parent was an ancestor of the
previous parent.

Grouping Nodes by Ranks
• Node v∈si (i≥0) iff. log*(1+rank of v)=i
• which means that: if node v is in group i, then

rv≤H(i)-1, but not in group with smaller labels

• So,
• Group 0: all nodes with rank 0

• Group 1: all nodes with rank 1

• Group 2: all nodes with rank 2 or 3

• Group 3: all nodes with its rank in [4, 15]

• Group 4: all nodes with its rank in [16, 65535]

• Group 5: all nodes with its rank in [65535, ???]

Group 5 exists only
when n is at least

265536. What is that?

Very Few Groups
• Node v∈Si (i≥0) iff.

• Upper bound of the
number of distinct node
groups is log*(n+1)

• The rank of any node
in F is at
most⎣logn⎦, so the
largest group index is
log*(1+⎣logn⎦)=log*
(⎡logn+1⎤) =
log*(n+1)‐1

log*(1 + rank of v)=i

Amortized Cost of Union-
Find

• Amortized Equation Recalled

• amortized cost = actual cost + accounting cost

• The operations to be considered:

• n makeSets

• m union & find (with at most n‐1 unions)

One Execution of cFind(w0)

Amortizing Scheme for
wUnion-cFind

• makeSet

• Accounting cost is 4log*(n+1)

• So, the amortized cost is 1+4log*(n+1)

• wUnion

• Accounting cost is 0

• So the amortized cost is 1

• cFind

• Accounting cost is describes as in the previous page.

• Amortized cost ≤ 2k‐2((k‐1)‐(log*(n+1)‐1))=2log*(n+1)
(Compare with the worst case cost of cFind, 2logn)

Number of withdrawal

Validation of the

Amortizing Scheme

• We must be assure that the sum of the
accounting costs is never negative.

• The sum of the negative charges, incurred by
cFind, does not exceed 4nlog*(n+1)

• We prove this by showing that at most
2nlog*(n+1) withdrawals on nodes occur
during all the executions of cFind.

Key Idea in the Derivation
• For any node, the number of withdrawal will be less

than the number of different ranks in the group it
belongs to

• When a cFind changes the parent of a node, the new
parent is always has higher rank than the old parent.

• Once a node is assigned a new parent in a higher
group, no more negative amortized cost will incurred
for it again.

• The number of different ranks is limited within a group.

Derivation
• Bounding the number of withdrawals

Conclusion
• The number of link operations done by a

Union-Find program implemented with wUnion
and cFind, of length m on a set of n elements
is in O((n+m)log*(n)) in the worst case.

• Note: since the sum of accounting cost is
never negative, the actual cost is always not
less than amortized cost. The upper bound of
amortized cost is: (n+m)(1+4log*(n+1))

•

Thank you!

Q & A

