
Introduction to

Algorithm Design and Analysis

[11] Graph Traversal

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …
• Dynamic Equivalence Relation

• Implementing disjoint set by Union-Find

• Straight Union-Find

• Making Shorter Tree by Weighted Union

• Compressing Path by Compressing Find

• Amortized analysis of wUnion-cFind

Course Contents

BFS

DFS

DFS

(directed)

DFS

(undirected)

MST
Path

(single
source)

Path

(all-pair)

Dynamic
program

ming

decomposition graph structure

graph problems

greedy DP

optimization problems

Course Contents

BFS

DFS

DFS

(directed)

DFS

(undirected)

MST
Path

(single
source)

Path

(all-pair)

Dynamic
program

ming

graph problems

decomposition graph structure

greedy DP

optimization problems

Graph Everywhere

Graph Everywhere
Protein-protein interaction network

Graph Basics
• Node

• Entities of interest

• V(G)

• Edge

• Relations of interest

• E(G) ∈ V x V

Graph Traversals

• Depth-First and Breadth-First Search

• Finding Connected Components

• General DFS/BFS Skeleton

• Depth-First Search Trace

Graph Traversal

A D

F

B

C

G

E

Starting node

Not reachable

Depth-First Search

Graph Traversal

A D

F

B

C

G

E

Starting node

Not reachable

Breadth-First Search

Outline of

Depth-First Search

• dfs(G, v)

• Mark v as “discovered”.

• For each vertex w that edge vw is in G:

• If w is undiscovered:

• dfs(G, w)

• Otherwise:

• “check” vw without visiting w.

• Mark v as “finished”.

A vertex must be exact one of three
different status:

 Undiscovered

 Discovered but not finished

 Finished

That is: exploring vw, visiting w,
exploring from there as much as
possible, and backtrack from w to v.

Outline of

Breadth-First Search

• bfs(G, v)

• Mark s as “discovered”;

• enqueue(pending, s);

• while (pending is nonempty)

• dequeue(pending, v);

• For each vertex w that edge vw is in G:

• If w is “undiscovered”

• Mark w as “discovered” and enqueue(pending, w)

• Mark v as “finished”;

Finding Connected
Components

• Input: a symmetric digraph G, with n nodes and 2m edges
(interpreted as undirected graph), implemented as a array
adjVertices[1,…n] of adjacency lists.

• Output: an array cc[1..n] of component number for each node vi.
• void connectedComponents(intlist[] adjVertices, int n, int[] cc)//

This is a wrapper procedure
• int[] color=new int[n+1];
• int v;
• <initialize color array to white for all vertices>
• for(v=1; v≤n; v++)
• if(color[v]==white)
• ccDFS(adjVertices, color, v, v, cc);
• return

Depth-first search

ccDFS: the procedure
• void ccDFS(intList[] adjVertices, int[] color, int v, int ccNum, int[]

cc)// v as the code of current connected component
• int w;
• intList remAdj;
• color[v]=gray;
• cc[v]=ccNum;
• remAdj=adjVertices[v];
• while(remAdj != nil)
• w=first(remAdj);
• if(color[w]==white)
• ccDFS(adjVertices, color, w, ccNum, cc);
• remAdj=rest(remAdj);
• color[v]=black;
• return

The elements
of remAdj are
neighbors of v

Processing the next neighbor,
if existing, another depth‐first
search to be incurred

v finished

Analysis of CC Algorithm
• connectedComponents, the wrapper

• Linear in n (color array initialization+for loop on adjVertices)

• ccDFS, the depth-first searcher

• In one execution of ccDFS on v, the number of
instructions(rest(remAdj)) executed is proportional to the size of
adjVertices[v].

• Note: ∑ (size of adjVertices[v]) is 2m, and the adjacency lists are
traversed only once.

• So, the time complexity is in Θ(m+n)

• Extra space requirements:

• Color array

• Activation frame stack for recursion

Visits On a Vertex
• Classification for visits on a vertex

• First visit (exploring): status: white->gray

• (Possibly) multi-visits by backtracking to: status keeps gray

• Last visit (no more branch-finished): status: gray->black

• Different operations can be done, during the different visits
on a specific vertex

• On the vertex

• On (selected) incident edges

Depth-first Search Trees

A D

F

B

C

G

E

Root of tree 1

Root of tree 2

DFS forest={(DFS tree1), (DFS tree2)}

T.E: tree edge

B.E: back edge

D.E: descendant edge

C.E: cross edge

A finished vertex is never revisited, such as C.

B.E

B.
E

T.
E

T.E
T.E

T.
E

C.E
D.E C.E

C.E T.E

B.E

C.E

Depth-First Search —

Generalized Skeleton

• Input: Array adjVertices for graph G

• Output: Return value depends on application

• int dfsSweep(intList[], adjVertices, int n, …)

• int ans;

• <Allocate color array and initialize to white>

• for each vertex v of G, in some order

• if(color[v]==white)

• int vAns=dfs(adjVertices, color, v, …);

• <Process vAns>

• // continue loop

• return ans;

Depth-First Search —

Generalized Skeleton

• int dfs(intList[] adjVertices, int[] color, int v, …)
• int w;
• intList remAdj;
• int ans;
• color[v]=gray;
• <Preorder processing of vertex v>
• remAdj=adjVertices[v];
• while(remAdj != nil)
• w=first(remAdj);
• if(color[w]==white)
• <Exploratory processing for tree edge vw>
• int wAns=dfs(adjVertices, color, w, …)
• <Backtrack processing for tree edge vw, using wAns>
• else
• <Checking for nontree edge vw>
• remAdj=rest(remAdj);
• <Postorder processing of vertex v, including final computation of ans>
• color[v]=black;
• return ans;

If partial search is used for a
application, tests for termination
may be inserted here.

Specialized for connected components:

 Parameter added

 Preorder processing inserted - cc[v] =ccNum

Breadth-First Search —

Skeleton

• Input: Array adjVertices for graph G

• Output: Return value depends on application

• void bfsSweep(intList[], adjVertices, int n, …)

• int ans;

• <Allocate color array and initialize to white>

• for each vertex v of G, in some order

• if(color[v]==white)

• void bfs(adjVertices, color, v, …);

• // continue loop

• return;

Breadth-First Search —

Skeleton

• void bfs(intList[] adjVertices, int[] color, int v, …)
• int w; intList remAdj; Queue pending;
• color[v]=gray; enqueue(pending, v);
• while(pending is nonempty)
• w=dequeue(pending); remAdj=adjVertices[w];
• while(remAdj!=nil)
• x=first(remAdj);
• if(color[x]==while)
• color[x]=gray; enqueue(pending, x);
• remAdj=rest(remAdj);
• <processing of vertex w>
• color[w]=black;
• return

Can be further generalized

DFS v.s. BFS Search
• Processing opportunities for a node

• Depth-first: 2

• At discovering

• At finishing

• Breadth-first: only 1, when de-queued

• At the second processing opportunity for the DFS, the
algorithm can make use of information about the
descendants of the current node.

Time Relation on

Changing Color

• Keeping the order in which vertices are encountered for the first or last
time

• A global integer time: 0 as the initial value, incremented with each
color changing for any vertex, and the final value is 2n

• Array discoverTime: the i th element records the time vertex vi turns
into gray

• Array finishTime: the i th element records the time vertex vi turns into
black

• The active interval for vertex v, denoted as active(v), is the duration
while v is gray, that is:

• discoverTime[v], …, finishTime[v]

Depth-First Search Trace
• General DFS skeleton modified to compute discovery and finishing

times and “construct” the depth-first search forest.

• int dfsTraceSweep(intList[] adjVertices, int n, int[] discoverTime, int[]
finishTime, int[] parent)

• int ans; int time=0;

• <Allocate color array and initialize to white>

• for each vertex v of G, in some order

• if(color[v]==white)

• parent[v]=-1

• int vAns=dfsTrace(adjVertices, color, v, discoverTime, finishTime,
parent, time);

• //continue loop

• return ans;

Depth-First Search Trace
• int dfsTrace(intList[] adjVertices, int[] color, int v, int[] discoverTime,

int[] finishTime, int[] parent, int time)
• int w; intList remAdj; int ans;
• color[v]=gray; time++; discoverTime[v]=time;
• remAdj=adjVertices[v];
• while(remAdj != nil)
• w=first(remAdj);
• if(color[w]==white)
• parent[w]=v;
• Int wAns=dfs(adjVertices, color, w, discoverTime, finishTime,

parent, time);
• else <Checking for nontree edge vw>
• remAdj=rest(remAdj);
• time++; finishTime[v]=time;
• color[v]=black;
• Return ans;

Active Interval
A D

F

B

C

G

E

B.E

B.
E

T.
E

T.E
T.E

T.
E

C.E

D.E C.E

C.E T.E

B.E

C.E

1/10

8/9 3/4 11/14

12/13

5/6

2/7

The relations are summarized in the next frame

T.E: tree edge

B.E: back edge

D.E: descendant edge

C.E: cross edge

Properties of Active
Intervals(1)

• If w is a descendant of v in the DFS forest, then active(w)⊆active(v),
and the inclusion is proper if w≠v.

• Proof:

• Define a partial order <: w<v iff. w is a proper descendants of v in its
DFS tree. The proof is by induction on <.

• If v is minimal. The only descendant of v is itself. Trivial.

• Assume that for all x<v, if w is a descendant of x, then
active(w)⊆active(x).

• Let w be any proper descendant of v in the DFS tree, there must be
some x such that vx is a tree edge on the tree path to w, so w is a
descendant of x. According to dfsTrace, we have active(x)⊂active(v),
by inductive hypothesis, active(w)⊂active(v).

Properties of Active
Intervals(2)

• If active(w)⊆active(v), then w is a descendant of v. And if
active(w)⊂active(v), then w is a proper descendant of v.

• That is: w is discovered while v is active.

• Proof:

• If w is not a descendant of v, there are two cases:

• v is a proper descendant of w, then active(v)⊂active(w), so, it is
impossible that active(w)⊆active(v), contradiction.

• There is no ancestor/descendant relationship between v and w,
then active(w) and active(v) are disjoint, contradiction.

Properties of Active
Intervals(3)

• If v and w have no ancestor/descendant relationship in the DFS
forest, then their active intervals are disjoint.

• Proof:

• If v and w are in different DFS tree, it is trivially true, since the trees
are processed one by one.

• Otherwise, there must be a vertex c, satisfying that there are tree
paths c to v, and c to w, without edges in common. Let the leading
edges of the two tree path are cy, cz, respectively. According to
dfsTrace, active(y) and active(z) are disjoint.

• We have active(v)∈active(y), active(w)∈active(z). So, active(v) and
active(w) are disjoint.

Properties of Active
Intervals(4)

• If edge vw ∈ EG, then

• vw is a cross edge iff. active(w) entirely precedes
active(v).

• vw is a descendant edge iff. there is some third vertex
x, such that active(w)⊂active(x)⊂active(v),

• vw is a tree edge iff. active(w)⊂active(v), and there is no
third vertex x, such that active(w)⊂active(x)⊂active(v),

• vw is a back edge iff. active(v)⊂active(w),

Ancestor and Descendant
• That w is a descendant

of v in the DFS forest
means that there is a
direct path from v to w
in some DFS tree.

• The path is also a path
in G.

• However, if there is a
direct path from v to w
in G, is w necessarily a
descendant of v in the
DFS forest?

DFS Tree Path
• [White Path Theorem] w is a descendant of v in

a DFS tree iff. At the time v is discovered (just
to be changing color into gray), there is a path
in G from v to w consisting entirely of white
vertices.

Proof of White Path
Theorem

• Proof

• => all the vertices in the path are descendants of v.

• <= by induction on the length k of a white path from v
to w.

• When k=0, v=w.

• For k>0, let P=(v, x1,x2...xk=w). There must be some vertex on
P which is discovered during the active interval of v, e.g. x1,
Let xi is earliest discovered among them. Divide P into P1 from
v to xi, and P2 from xi to w. P2 is a white path with length less
than k, so, by inductive hypothesis, w is a descendant of xi.
Note: active(xi)⊆active(v), so xi is a descendant of v. By
transitivity, w is a descendant of v.

Thank you!

Q & A

