Introduction to

Algorithm Design and Analysis

[11] Graph Traversal

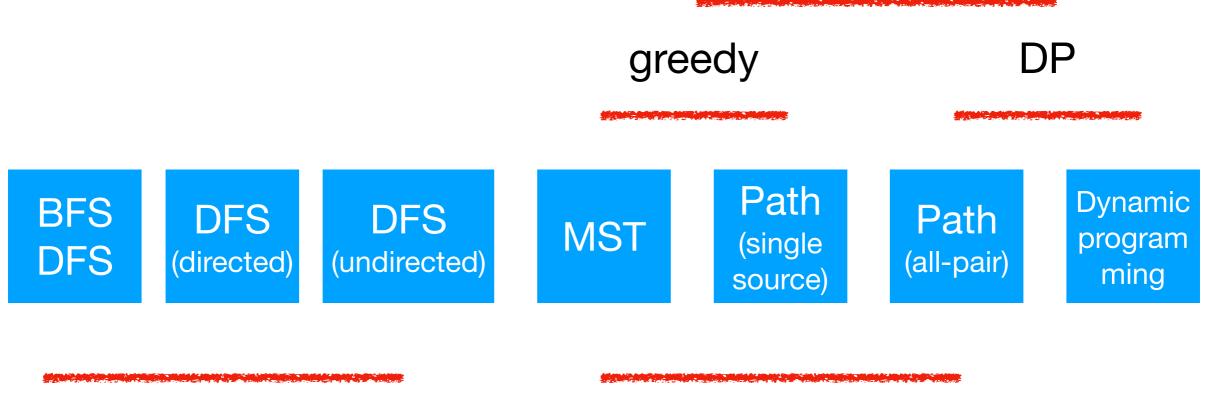
Jingwei Xu https://ics.nju.edu.cn/~xjw/ Institute of Computer Software Nanjing University

In the last class ...

- Dynamic Equivalence Relation
- Implementing disjoint set by Union-Find
 - Straight Union-Find
 - Making Shorter Tree by Weighted Union
 - Compressing Path by Compressing Find
 - Amortized analysis of wUnion-cFind

Course Contents

optimization problems

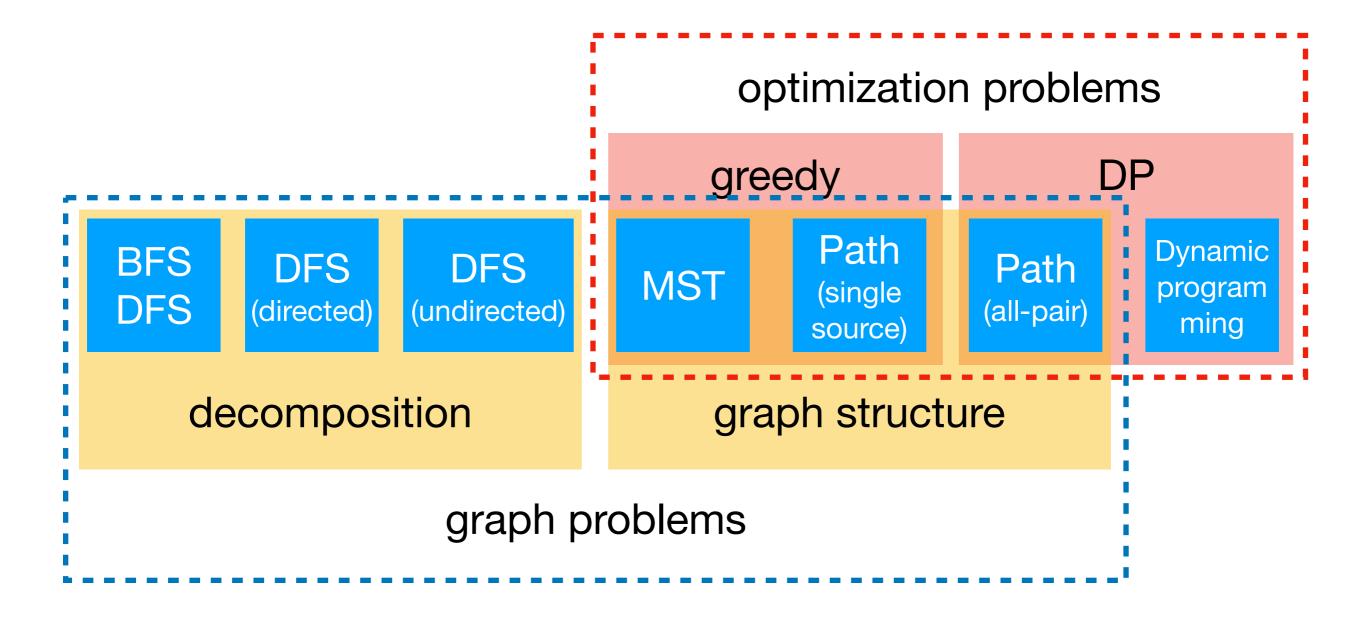


decomposition

graph structure

graph problems

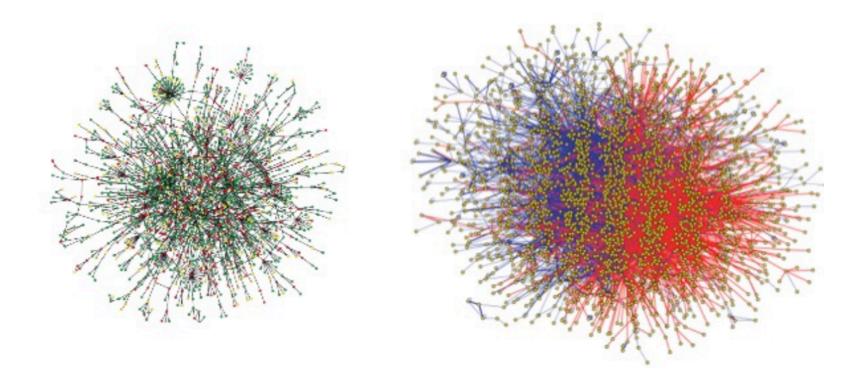
Course Contents



Graph Everywhere

Graph Everywhere

Protein-protein interaction network



Graph Basics

Node

- Entities of interest
- V(G)
- Edge
 - Relations of interest
 - $E(G) \in V \times V$

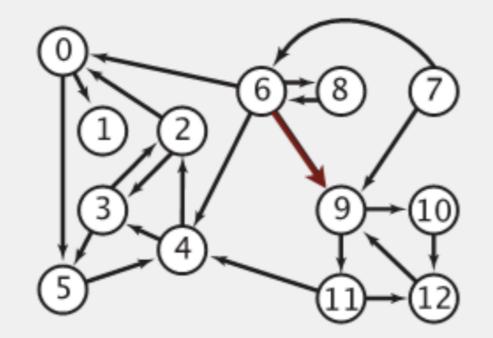
Graph Traversals

- Depth-First and Breadth-First Search
- Finding Connected Components

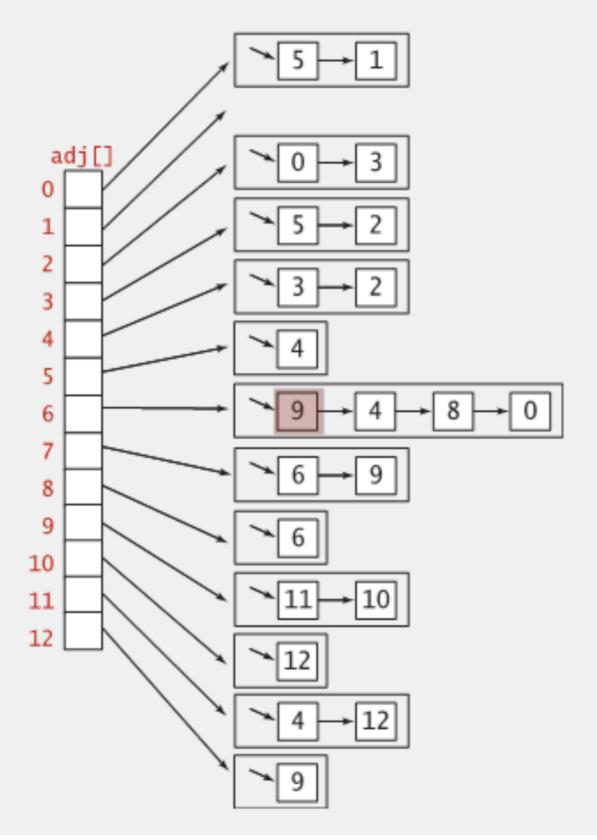
- General DFS/BFS Skeleton
- Depth-First Search Trace

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

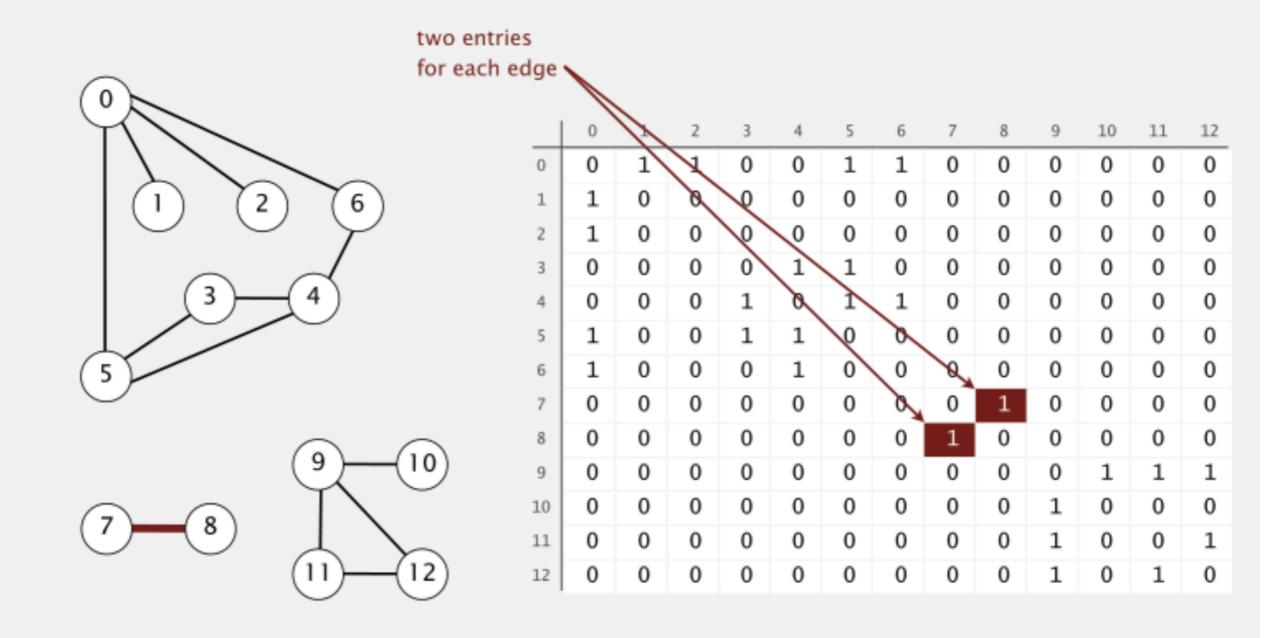


Directed vs. **Undirected** graphs

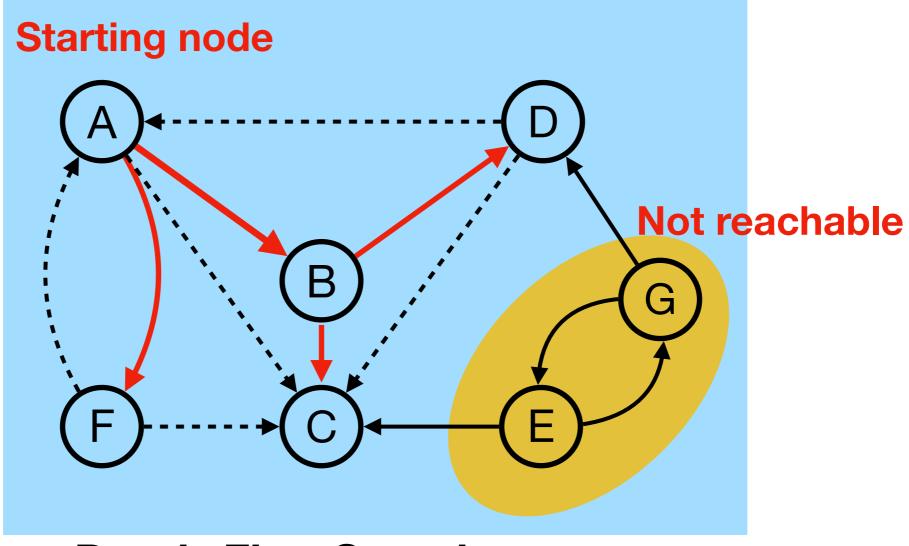


Adjacency-matrix graph representation

Maintain a two-dimensional *V*-by-*V* boolean array; for each edge *v*-*w* in graph: adj[v][w] = adj[w][v] = true.

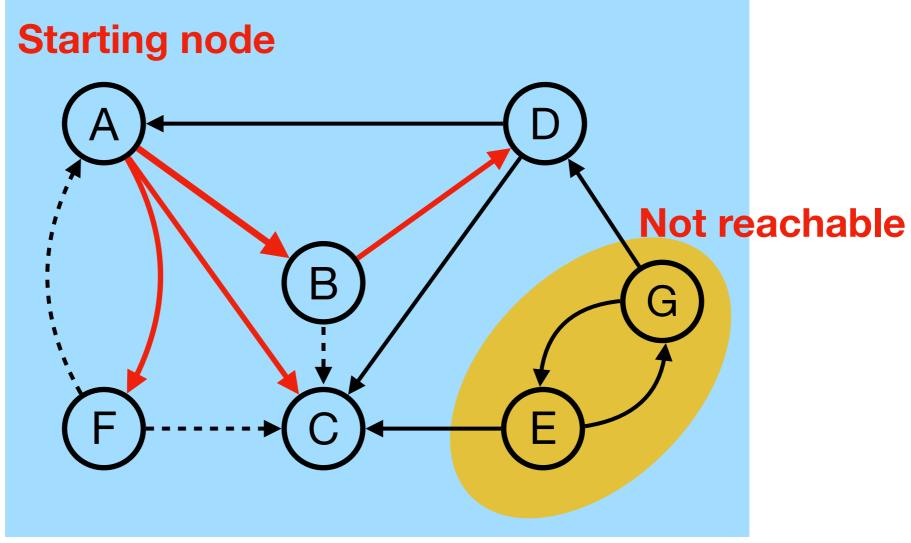


Graph Traversal



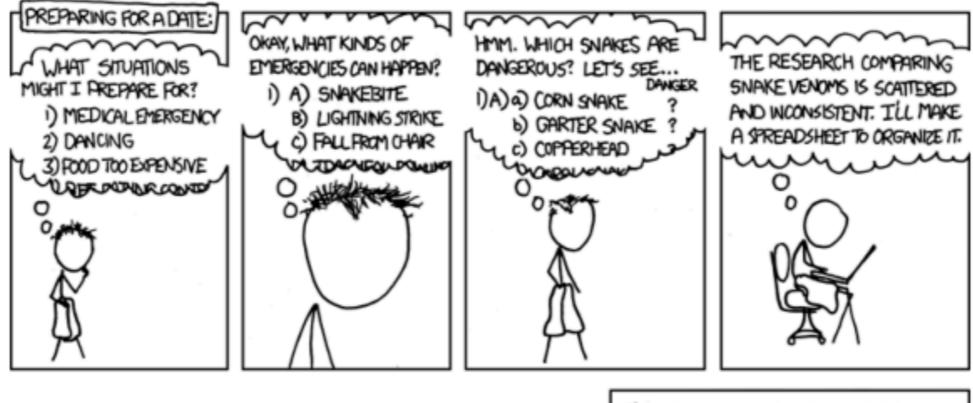
Depth-First Search

Graph Traversal



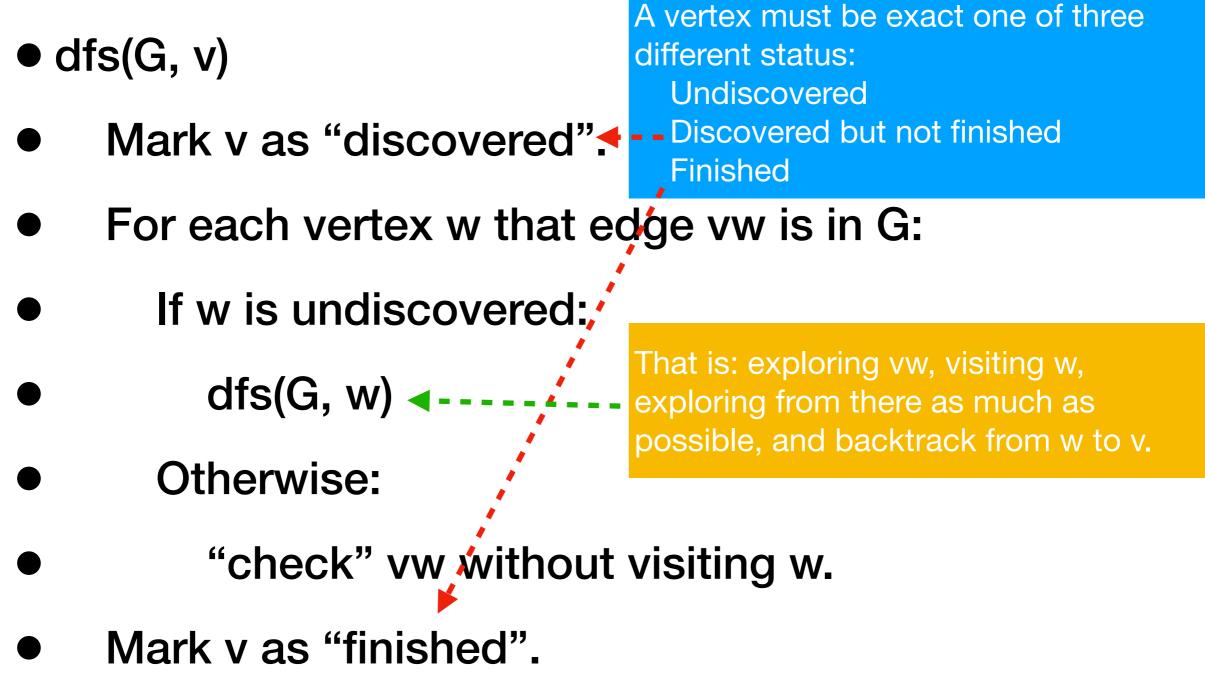
Breadth-First Search

Depth-first search application: preparing for a date



I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

Outline of Depth-First Search



Outline of Breadth-First Search • bfs(G, v)

- Mark s as "discovered";
- enqueue(pending, s);

- while (pending is nonempty)
- dequeue(pending, v);
 - For each vertex w that edge vw is in G:
 - If w is "undiscovered"

Mark w as "discovered" and enqueue(pending, w)

Mark v as "finished";

Finding Connected Components

- Input: a symmetric digraph G, with n nodes and 2m edges (interpreted as undirected graph), implemented as a array adjVertices[1,...n] of adjacency lists.
- Output: an array cc[1..n] of component number for each node v_i .
- void connectedComponents(intlist[] adjVertices, int n, int[] cc)// This is a wrapper procedure
- int[] color=new int[n+1];
- int v;

Depth-first search

- <initialize color array to white for all vertices>
- for(v=1; v≤n; v++)
- if(color[v]==white)
- ccDFS(adjVertices, color, v, v, cc);
- return

ccDFS: the procedure

 void ccDFS(intList[] adjVertices, int[] color, int v, int ccNum, int[] cc)// v as the code of current connected component

v finished

- int w;
- intList remAdj;
- color[v]=gray;
- cc[v]=ccNum;
- remAdj=adjVertices[v];
- while(remAdj != nil)
- w=first(remAdj);
- if(color[w]==white)
- ccDFS(adjVertices, color, w, ccNum, cc);
- remAdj=rest(remAdj);
- color[v]=black;
- return

The elements of *remAdj* are neighbors of *v*

> Processing the next neighbor, if existing, another depth-first search to be incurred

Analysis of CC Algorithm

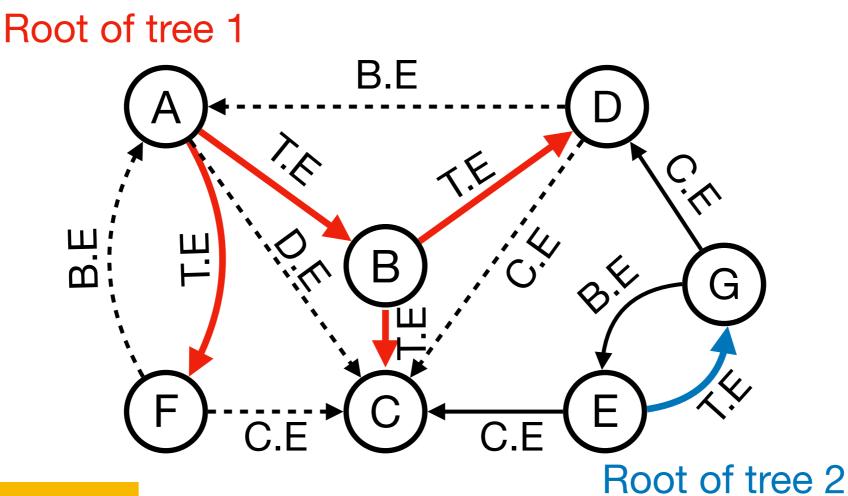
- connectedComponents, the wrapper
 - Linear in n (color array initialization+for loop on adjVertices)
- ccDFS, the depth-first searcher
 - In one execution of ccDFS on v, the number of instructions(rest(remAdj)) executed is proportional to the size of adjVertices[v].
 - Note: ∑ (size of adjVertices[v]) is 2m, and the adjacency lists are traversed only once.
- So, the time complexity is in $\Theta(m+n)$
 - Extra space requirements:
 - Color array
 - Activation frame stack for recursion

Visits On a Vertex

- Classification for visits on a vertex
 - First visit (exploring): status: white->gray
 - (Possibly) multi-visits by backtracking to: status keeps gray
 - Last visit (no more branch-finished): status: gray->black
- Different operations can be done, during the different visits on a specific vertex
 - On the vertex
 - On (selected) incident edges

Depth-first Search Trees

DFS forest={(DFS tree1), (DFS tree2)}



T.E: tree edge B.E: back edge D.E: descendant edge C.E: cross edge

A finished vertex is never revisited, such as C.

Depth-First Search — Generalized Skeleton

- Input: Array adjVertices for graph G
- Output: Return value depends on application
- int dfsSweep(intList[], adjVertices, int n, ...)
- int ans;
- <Allocate color array and initialize to white>
- for each vertex v of G, in some order
- if(color[v]==white)
- int vAns=dfs(adjVertices, color, v, ...);
- <Process vAns>
- // continue loop
- return ans;

Depth-First Search — Generalized Skeleton

- int dfs(intList[] adjVertices, int[] color, int v, …)
- int w;
- intList remAdj;
- int ans;
- color[v]=gray;
- Preorder processing of vertex v>.
- remAdj=adjVertices[v];
- while(remAdj != nil)
- w=first(remAdj);
- if(color[w]==white)
- <Exploratory-processing for tree edge vw>
- int wAns=dfs(adjVertices, color, w, ...)
- <Backtrack processing for tree edge vw, using wAns>
- else
- Checking for nontree edge vw>
- remAdj=rest(remAdj);
- <Postorder processing of vertex v, including final computation of ans>
- color[v]=black;
- return ans;

- If partial search is used for a application, tests for termination may be inserted here.
- Specialized for connected components: Parameter added Preorder processing inserted - cc[v] =ccNum

Breadth-First Search — Skeleton

- Input: Array adjVertices for graph G
- Output: Return value depends on application
- void bfsSweep(intList[], adjVertices, int n, ...)
- int ans;
- <Allocate color array and initialize to white>
- for each vertex v of G, in some order
- if(color[v]==white)
- void bfs(adjVertices, color, v, ...);
- // continue loop
- return;

Breadth-First Search — Skeleton

Can be further generalized

- void bfs(intList[] adjVertices, int[] color, int v, …)
- int w; intList remAdj; Queue pending;
- ocolor[v]=gray; enqueue(pending, v);
- while(pending is nonempty)
- w=dequeue(pending); remAdj=adjVertices[w];
- while(remAdj!=nil)
- x=first(remAdj);
- if(color[x]==while)
- color[x]=gray; enqueue(pending, x);
- remAdj=rest(remAdj);
- orcessing of vertex w>
- color[w]=black;
- return

DFS v.s. BFS Search

- Processing opportunities for a node
 - Depth-first: 2
 - At discovering
 - At finishing
 - Breadth-first: only 1, when de-queued
 - At the second processing opportunity for the DFS, the algorithm can make use of information about the descendants of the current node.

Time Relation on Changing Color

- Keeping the order in which vertices are encountered for the first or last time
 - A global integer time: 0 as the initial value, incremented with each color changing for *any* vertex, and the final value is 2*n*
 - Array discoverTime: the *i* th element records the time vertex v_i turns into gray
 - Array finishTime: the i th element records the time vertex v_i turns into black
 - The active interval for vertex *v*, denoted as *active*(*v*), is the duration while *v* is gray, that is:

discoverTime[v], ..., finishTime[v]

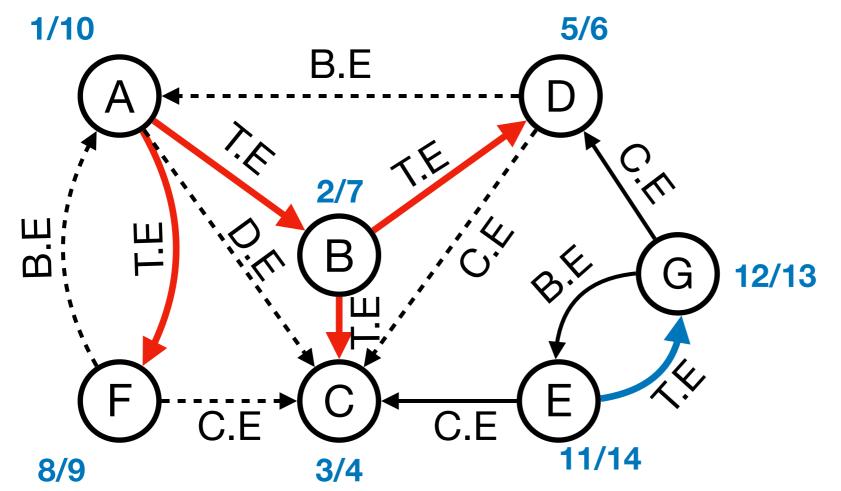
Depth-First Search Trace

- General DFS skeleton modified to compute discovery and finishing times and "construct" the depth-first search forest.
- int dfsTraceSweep(intList[] adjVertices, int n, int[] discoverTime, int[] finishTime, int[] parent)
- int ans; int time=0;
- <Allocate color array and initialize to white>
- for each vertex v of G, in some order
- if(color[v]==white)
- parent[v]=-1
- int vAns=dfsTrace(adjVertices, color, v, discoverTime, finishTime, parent, time);
- //continue loop
- return ans;

Depth-First Search Trace

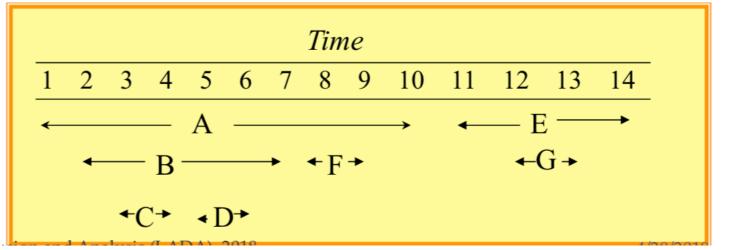
- int dfsTrace(intList[] adjVertices, int[] color, int v, int[] discoverTime, int[] finishTime, int[] parent, int time)
- int w; intList remAdj; int ans;
- color[v]=gray; time++; discoverTime[v]=time;
- remAdj=adjVertices[v];
- while(remAdj != nil)
- w=first(remAdj);
- if(color[w]==white)
- parent[w]=v;
- Int wAns=dfs(adjVertices, color, w, discoverTime, finishTime, parent, time);
- else <Checking for nontree edge vw>
- remAdj=rest(remAdj);
- time++; finishTime[v]=time;
- color[v]=black;
- Return ans;

Active Interval



The relations are summarized in the next frame

T.E: tree edge B.E: back edge D.E: descendant edge C.E: cross edge



Properties of Active Intervals(1)

 If w is a descendant of v in the DFS forest, then active(w)⊆active(v), and the inclusion is proper if w≠v.

• Proof:

- Define a partial order <: w<v iff. w is a proper descendants of v in its DFS tree. The proof is by induction on <.
- If v is minimal. The only descendant of v is itself. Trivial.
- Assume that for all x<v, if w is a descendant of x, then active(w)⊆active(x).
- Let w be any proper descendant of v in the DFS tree, there must be some x such that vx is a tree edge on the tree path to w, so w is a descendant of x. According to dfsTrace, we have active(x) ⊂ active(v), by inductive hypothesis, active(w) ⊂ active(v).

Properties of Active Intervals(2)

- If active(w)⊆active(v), then w is a descendant of v. And if active(w)⊂active(v), then w is a proper descendant of v.
- That is: w is discovered while v is active.
- Proof:
 - If w is **not** a descendant of v, there are two cases:
 - v is a proper descendant of w, then active(v) ⊂ active(w), so, it is impossible that active(w) ⊆ active(v), contradiction.
 - There is no ancestor/descendant relationship between v and w, then *active(w)* and *active(v)* are disjoint, contradiction.

Properties of Active Intervals(3)

• If v and w have no ancestor/descendant relationship in the DFS forest, then their active intervals are disjoint.

• Proof:

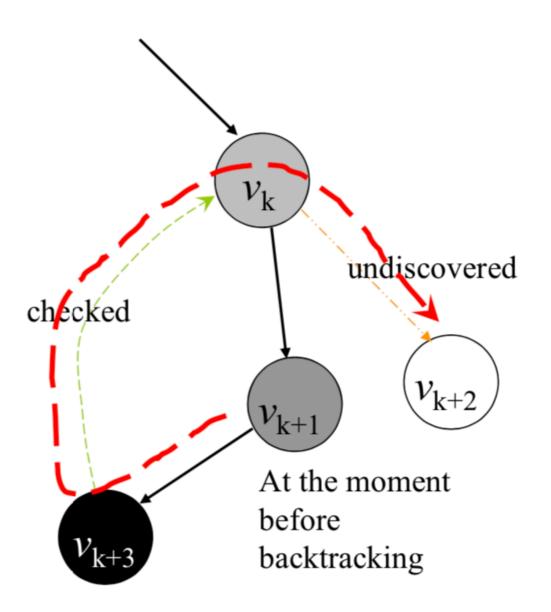
- If v and w are in different DFS tree, it is trivially true, since the trees are processed one by one.
- Otherwise, there must be a vertex c, satisfying that there are tree paths c to v, and c to w, without edges in common. Let the leading edges of the two tree path are cy, cz, respectively. According to dfsTrace, active(y) and active(z) are disjoint.
- We have active(v)∈active(y), active(w)∈active(z). So, active(v) and active(w) are disjoint.

Properties of Active Intervals(4)

- \bullet If edge vw \in E_G, then
 - vw is a cross edge iff. active(w) entirely precedes active(v).
 - vw is a descendant edge iff. there is some third vertex x, such that active(w) ⊂ active(x) ⊂ active(v),
 - vw is a tree edge iff. active(w) ⊂ active(v), and there is no third vertex x, such that active(w) ⊂ active(x) ⊂ active(v),
 - vw is a **back edge** iff. *active*(v)*⊂active*(w),

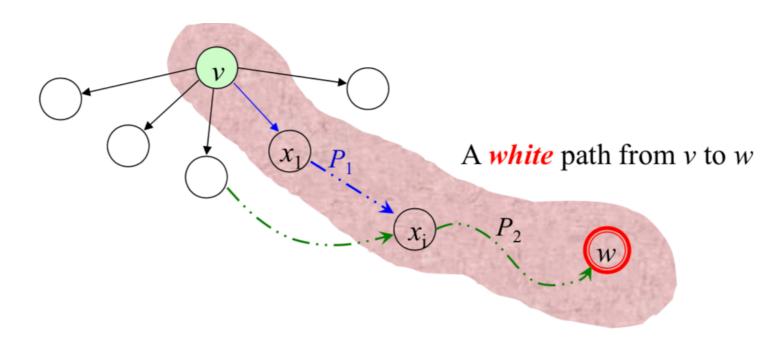
Ancestor and Descendant

- That w is a descendant of v in the DFS forest means that there is a direct path from v to w in some DFS tree.
- The path is also a path in *G*.
- However, if there is a direct path from v to w in G, is w necessarily a descendant of v in the DFS forest?



DFS Tree Path

 [White Path Theorem] w is a descendant of v in a DFS tree iff. At the time v is discovered (just to be changing color into gray), there is a path in G from v to w consisting entirely of white vertices.



Proof of White Path Theorem

Proof

- => all the vertices in the path are descendants of v.
- <= by induction on the length k of a white path from v to w.
 - When k=0, v=w.
 - For k>0, let P=(v, x₁,x₂...x_k=w). There must be some vertex on *P* which is discovered during the active interval of v, e.g. x₁, Let x_i is earliest discovered among them. Divide *P* into P₁ from v to x_i, and P₂ from x_i to w. P₂ is a white path with length less than *k*, so, by inductive hypothesis, w is a descendant of x_i. Note: *active*(x_i)⊆*active*(v), so x_i is a descendant of v. By transitivity, w is a descendant of v.

Thank you! Q&A