Introduction to

Algorithm Design and Analysis

[11] Graph Traversal

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University



https://ics.nju.edu.cn/~xjw/

INn the last class ...

® Dynamic Equivalence Relation

® Implementing disjoint set by Union-Find
e Straight Union-Find
e Making Shorter Tree by Weighted Union
e Compressing Path by Compressing Find

e Amortized analysis of wUnion-cFind



Course Contents

optimization problems

DP

BFS Path Dynamic
DFS DFS MST (single Path program
DFS (directed) | (undirected) N, (all-pair) ming

decomposition graph structure

graph problems



Course Contents

BFS B DFS DFS
DFS B (directed) @ (undirected)

decomposition graph structure

Dynamic

program

source)

graph problems



€

5 @&m..\u%,

vospny

12al1y

SN33IND

PH 1K ung !!h
XNO¥S8 61z

L =
AV sasaudheg viIse

Ay aikg
smsaynse3 ay pson § 1

Graph Everywhere

o 1812 Iy
PrOyIYE




Graph Everywhere

rotein-protein interaction network

.



Graph Basics

® Node
e Entities of interest
e V(G)
® Edge
* Relations of interest

e E(G)eVxV



Graph Traversals

® Depth-First and Breadth-First Search

® Finding Connected Components

® General DFS/BFS Skeleton

® Depth-First Search Trace



Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj [

]

O 00 N O n & W N = O

o
- &

o

e

ot
—

—
N

Directed vs. Undirected graphs

77/ TN

~5 -1
~o}—{3
~5 {2
~[3 {2
~[4

~ot-{4
~[6}—[9
~[6

~[11}—{10
~[12

~[a 112




Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array;

true.

adj[w][v] =

for each edge v—w in graph: adj[v][w]

two entries

for each edge

12

11

10




Graph Traversal

Starting node

Not reachable

Depth-First Search



Graph Traversal

Starting node

4
’
1
|
I

Not reachable

; .

Breadth-First Search




Depth-first search application: preparing for a date

PREPPRING FOR A DATE: VYTV e
wn.wocsam;;‘ NN YV

OKAY, WHAT KINDS OF
WHAT SITUATIONS EMERGENCIES CANHPPEN?  DANGERDUS? LETS SEE... Mmﬂénm
MIGHT T PREPARE. RR7 ) A) SNAKEBITE DA (ORN SNAKE m? ::KE\OO'B m
1) MEDICAL EMERGENCY B) LIGHTNNG STRIKE §) GARTER SNAKE. 7 WCONSISTENT.
2) DANCNG M Q PR 0#R o COPRERMERD A FPREADSHEET T ORGANE IT.
N, DR0D ROBFENSVE MAAAAY A AA
O 0 o
O fo) 0 0

0

A

TMHEREDPEX. BY LDy, THE INAND
YOUUR YoURE TAIPAN HAS THE DBADLIEST
NOT DRESSED?  VENKH OF @Y SNAKE'

\ )
gi
xkcd

http://xkcd.com/761/
T REALY NEED O ST™P
USING DEPTH-FIRST SEARCHES.




Outline of
Depth-First Search

A vertex must be exact one of three

® dfs(G, v) different status:
Undiscovered

®@ Mark v as “discovered”«F BEEeEICeRelelfillEEl
Finished

® For each vertex w that edge vw is in G:

o If wis undiscoveredf,"

. dfS(G, W) <= - -

o Otherwise:

o “check” vwfv(/ithout visiting w.

® Mark v as “finished”.



Outline of
Breadth-First Search

® bfs(G, v)

® Mark s as “discovered”;

® enqueue(pending, s);

® while (pending is nonempty)

® dequeue(pending, v);

® For each vertex w that edge vw is in G:

® If wis “undiscovered”

® Mark w as “discovered” and enqueue(pending, w)
o Mark v as “finished”;



Finding Connected
Components

® Input: a symmetric digraph G, with n nodes and 2m edges
(interpreted as undirected graph), implemented as a array
adjVertices[1,...n] of adjacency lists.

® Output: an array cc[1..n] of component number for each node vi..

® void connectedComponents(intlist[] adjVertices, int n, int[] cc)//
This Is a wrapper procedure

int[] color=new int[n+1];
int v; Depth-first search
<initialize color array to white for all vertices>

for(v=1; v=n; v++)

if(color[v]==white)

return



ccDFS: the procedure

® void ccDFS(intList[] adjVertices, int[] color, int v, int ccNum, int[]
cc)// v as the code of current connected component

® Intw;

® intList remAdj; The elements
® color|v]=gray; _ of remAdj are
o CC[V]=CCI\_|l_Jm-; ______ neighbors of v
® remAaj'=—adjVertices[v];

® while(remAdj != nil)

° w=first(remAd,j); _.-"T
° if(color[w]==white) ~ _.--~ o

° ccDFS(adjVertices, color, w, ccNum, cc);
® remAdj=rest(remAdij);

® color[v]=bl<ack;

°

return



Analysis of CC Algorithm

® connectedComponents, the wrapper

e Linear in n (color array initialization+for loop on adjVertices)

® ccDFS, the depth-first searcher

e In one execution of ccDFS on v, the number of
instructions(rest(remAdj)) executed is proportional to the size of

adjVertices|v].

e Note: ) (size of adjVertices|v]) is 2m, and the adjacency lists are
traversed only once.

® So, the time complexity is in ©(m+n)
e Extra space requirements:

e Color array

e Activation frame stack for recursion



Visits On a Vertex

® Classification for visits on a vertex
e First visit (exploring): status: white->gray
e (Possibly) multi-visits by backtracking to: status keeps gray
e Last visit (ho more branch-finished): status: gray->black

® Different operations can be done, during the different visits
on a specific vertex

e On the vertex

e On (selected) incident edges



Depth-first Search Trees

DFS forest={(DFS treel), (DFS tree2)}

Root of tree 1

Root of tree 2

A finished vertex is never revisited, such as C.



Depth-First Search —
Generalized Skeleton

® Input: Array adjVertices for graph G
® Output: Return value depends on application
® int dfsSweep(intList[], adjVertices, int n, ...)
® Intans;
<Allocate color array and initialize to white>
for each vertex v of G, in some order
if(color[v]==white)
int vAns=dfs(adjVertices, color, v, ...);
<Process vAns>

// continue loop

return ans;



Depth-First Search —
Generalized Skeleton

® int dfs(intList[] adjVertices, int[] color, int v, ...)

int w;

intList remAd;j;
int ans; v
color|[v]=gray; AR
<Preorder processing of vertex v>,* ¢

. . . X 4
rerrllAdj=adjV.ert|c<.es[v]; o’ A Specialized for connected components:
while(remAd] != nil) o’ ’ Parameter added

w=first(remAdj); R ' Preorder processing inserted - cc[v] =ccNum
if(color[w]==white)+ K
<Exp|oratoryo[5rocessing fo'r tree edge vw>
int wAn;:dfs(adjVertices,'color, w, ...)
<Backtrack processing for tree edge vw, using wAns>
else 4
<Checking for nontree edge vw>
remAdj=rest(remAdj);
<Postorder processing of vertex v, including final computation of ans>
color|[v]=black;
return ans;




Breadth-First Search —
Skeleton

® Input: Array adjVertices for graph G
® Output: Return value depends on application
® void bfsSweep(intList[], adjVertices, int n, ...)
® |ntans;
<Allocate color array and initialize to white>
for each vertex v of G, in some order
if(color[v]==white)
void bfs(adjVertices, color, v, ...);

// continue loop

return;



Breadth-First Search —
Skeleton

® void bfs(intList[] adjVertices, int[] color, int v, ...)
int w; intList remAdj; Queue pending;
color[v]=gray; enqueue(pending, v);
while(pending is nonempty)
w=dequeue(pending); remAdj=adjVertices[w];
while(remAdj!=nil)
x=first(remAdj); Can be further generalized
if(color[x]==while)
color[x]=gray; enqueue(pending, x);
remAdj=rest(remAd;j);
<processing of vertex w>
color[w]=black;
return



DFS v.s. BFS Search

® Processing opportunities for a node
e Depth-first: 2
* At discovering
e At finishing
* Breadth-first: only 1, when de-queued

e At the second processing opportunity for the DFS, the
algorithm can make use of information about the
descendants of the current node.



Time Relation on
Changing Color

® Keeping the order in which vertices are encountered for the first or last
time

* A global integer time: 0 as the initial value, incremented with each
color changing for any vertex, and the final value is 2n

o Array discoverlTime: the i th element records the time vertex v turns
into gray

e Array finishTime: the i th element records the time vertex v turns into
black

* The active interval for vertex v, denoted as active(v), is the duration
while v is gray, that is:

discoverTimelv], ..., finishTime[v]



Depth-First Search Trace

® General DFS skeleton modified to compute discovery and finishing
times and “construct” the depth-first search forest.

® int dfsTraceSweep(intList[] adjVertices, int n, int[] discoverTime, int[]
finishTime, int[] parent)

Int ans; int time=0;

<Allocate color array and initialize to white>

for each vertex v of G, in some order
if(color[v]==white)

parent[v]=-1

int vAns=dfsTrace(adjVertices, color, v, discoverTime, finishTime,
parent, time);

//continue loop

® return ans;



Depth-First Search Trace

® int dfsTrace(intList[] adjVertices, int[] color, int v, int[] discoverTime,
int[] finishTime, int[] parent, int time)
int w; intList remAdj; int ans;
color[v]=gray; time++; discoverTime|v]=time;
remAdj=adjVertices|v];
while(remAdj != nil)
w=first(remAdj);
if(color[w]==white)
parent[w]=v;
Int wAns=dfs(adjVertices, color, w, discoverTime, finishTime,
parent, time);
else <Checking for nontree edge vw>
remAdj=rest(remAdj);
time++; finishTime[v]=time;
color[v]=black;
Return ans;



Active Interval

8/9 3/4 1114
The relations are summarized in the next frame

Time
1 2 3 4 5 6 7 8 9 10 11 12 13 14

<—F—> <—G—>

A
vy
v



Properties of Active
Intervals(1)

® If w is a descendant of v in the DFS forest, then active(w)cactive(v),
and the inclusion is proper If wzv.

® Proof:

* Define a partial order <: w<yv iff. w is a proper descendants of v in its
DFS tree. The proof is by induction on <.

* If vis minimal. The only descendant of v is itself. Trivial.

e Assume that for all x<v, if w is a descendant of x, then
active(w)cactive(x).

* Let w be any proper descendant of v in the DFS tree, there must be
some X such that vx is a tree edge on the tree path to w, sow is a
descendant of x. According to dfsTrace, we have active(x)cactive(v),

by inductive hypothesis, active(w)cactive(v).



Properties of Active
Intervals(2)

e If active(w)cactive(v), then w is a descendant of v. And if
active(w)cactive(v), then w is a proper descendant of v.

e That is: w is discovered while v is active.
e Proof:

e [f wis not a descendant of v, there are two cases:

e v is a proper descendant of w, then active(v)cactive(w), so, it is
impossible that active(w)cactive(v), contradiction.

* There is no ancestor/descendant relationship between v and w,
then active(w) and active(v) are disjoint, contradiction.



Properties of Active
Intervals(3)

e |If vand w have no ancestor/descendant relationship in the DFS
forest, then their active intervals are disjoint.

® Proof:

e If vand w are in different DFS tree, it is trivially true, since the trees
are processed one by one.

* Otherwise, there must be a vertex c, satisfying that there are tree
paths c to v, and c to w, without edges in common. Let the leading
edges of the two tree path are cy, cz, respectively. According to
dfsTrace, active(y) and active(z) are disjoint.

* \We have active(v)eactive(y), active(w)eactive(z). So, active(v) and
active(w) are disjoint.



Properties of Active
Intervals(4)

® If edge vw € Eg, then

* VW is a cross edge iff. active(w) entirely precedes
active(v).

* vw Is a descendant edge iff. there is some third vertex
X, such that active(w)cactive(x)cactive(v),

e vw is a tree edge iff. active(w)cactive(v), and there is no
third vertex x, such that active(w)cactive(x)cactive(v),

e vw is a back edge iff. active(v)cactive(w),



Ancestor and Descendant

® That w is a descendant
of v in the DFS forest
means that there is a
direct path from v to w
iIn some DFS tree.

® The path is also a path
in G.

® However, if there is a
direct path from v to w
in G, is w necessarily a
descendant of v in the
DFS forest?

AN

chﬂcked

\covered

At the moment
before
backtracking

&



DFS Tree Path

® [White Path Theorem] w is a descendant of v in
a DFS tree iff. At the time v is discovered (just
to be changing color into gray), there is a path
in G from v to w consisting entirely of white
vertices.



Proof of White Path
Theorem

® Proof

e => all the vertices in the path are descendants of v.

e <= by induction on the length k of a white path from v
to w.

e When k=0, v=w.

* For k>0, let P=(v, x1,X2...Xk=W). There must be some vertex on
P which is discovered during the active interval of v, e.g. X1,
Let xjis earliest discovered among them. Divide P into P41 from

v to xi, and P2 from xito w. P2 is a white path with length less

than k, so, by inductive hypothesis, w is a descendant of xi.
Note: active(xi)Cactive(v), so xiis a descendant of v. By
transitivity, w is a descendant of v.



Thank youl!
Q&A



