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In the last class …
• Dynamic Equivalence Relation 

• Implementing disjoint set by Union-Find 

• Straight Union-Find


• Making Shorter Tree by Weighted Union


• Compressing Path by Compressing Find


• Amortized analysis of wUnion-cFind
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Graph Everywhere



Graph Everywhere
Protein-protein interaction network



Graph Basics
• Node 

• Entities of interest


• V(G)


• Edge 

• Relations of interest


• E(G) ∈ V x V



Graph Traversals

• Depth-First and Breadth-First Search 

• Finding Connected Components 

• General DFS/BFS Skeleton 

• Depth-First Search Trace
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Outline of 

Depth-First Search

• dfs(G, v) 

•     Mark v as “discovered”. 

•     For each vertex w that edge vw is in G: 

•         If w is undiscovered: 

•             dfs(G, w) 

•         Otherwise: 

•             “check” vw without visiting w. 

•     Mark v as “finished”.

A vertex must be exact one of three 
different status:

    Undiscovered

    Discovered but not finished

    Finished

That is: exploring vw, visiting w, 
exploring from there as much as 
possible, and backtrack from w to v.



Outline of 

Breadth-First Search

• bfs(G, v) 

•     Mark s as “discovered”; 

•     enqueue(pending, s); 

•     while (pending is nonempty) 

•         dequeue(pending, v); 

•         For each vertex w that edge vw is in G: 

•             If w is “undiscovered” 

•                 Mark w as “discovered” and enqueue(pending, w) 

•         Mark v as “finished”;



Finding Connected 
Components

• Input: a symmetric digraph G, with n nodes and 2m edges 
(interpreted as undirected graph), implemented as a array 
adjVertices[1,…n] of adjacency lists. 

• Output: an array cc[1..n] of component number for each node vi. 
• void connectedComponents(intlist[] adjVertices, int n, int[] cc)//

This is a wrapper procedure 
•     int[] color=new int[n+1]; 
•     int v; 
•     <initialize color array to white for all vertices> 
•     for(v=1; v≤n; v++) 
•         if(color[v]==white) 
•             ccDFS(adjVertices, color, v, v, cc); 
•     return

Depth-first search



ccDFS: the procedure
• void ccDFS(intList[] adjVertices, int[] color, int v, int ccNum, int[] 

cc)// v as the code of current connected component 
•     int w; 
•     intList remAdj; 
•     color[v]=gray; 
•     cc[v]=ccNum; 
•     remAdj=adjVertices[v]; 
•     while(remAdj != nil) 
•         w=first(remAdj); 
•         if(color[w]==white) 
•             ccDFS(adjVertices, color, w, ccNum, cc); 
•             remAdj=rest(remAdj); 
•     color[v]=black; 
•     return

The elements 
of remAdj are 
neighbors of v 


Processing the next neighbor, 
if existing, another depth‐first 
search to be incurred 


v finished




Analysis of CC Algorithm
• connectedComponents, the wrapper 

• Linear in n (color array initialization+for loop on adjVertices)


• ccDFS, the depth-first searcher 

• In one execution of ccDFS on v, the number of 
instructions(rest(remAdj)) executed is proportional to the size of 
adjVertices[v].


• Note: ∑ (size of adjVertices[v]) is 2m, and the adjacency lists are 
traversed only once.


• So, the time complexity is in Θ(m+n) 

• Extra space requirements:


• Color array


• Activation frame stack for recursion



Visits On a Vertex
• Classification for visits on a vertex 

• First visit (exploring): status: white->gray


• (Possibly) multi-visits by backtracking to: status keeps gray


• Last visit (no more branch-finished): status: gray->black


• Different operations can be done, during the different visits 
on a specific vertex 

• On the vertex


• On (selected) incident edges
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Depth-First Search —

Generalized Skeleton

• Input: Array adjVertices for graph G 

• Output: Return value depends on application 

• int dfsSweep(intList[], adjVertices, int n, …) 

•     int ans; 

•     <Allocate color array and initialize to white> 

•     for each vertex v of G, in some order 

•         if(color[v]==white) 

•             int vAns=dfs(adjVertices, color, v, …); 

•             <Process vAns> 

•         // continue loop 

•     return ans;



Depth-First Search —

Generalized Skeleton

• int dfs(intList[] adjVertices, int[] color, int v, …) 
•     int w; 
•     intList remAdj; 
•     int ans; 
•     color[v]=gray; 
•     <Preorder processing of vertex v> 
•     remAdj=adjVertices[v]; 
•     while(remAdj != nil) 
•         w=first(remAdj); 
•         if(color[w]==white) 
•             <Exploratory processing for tree edge vw> 
•             int wAns=dfs(adjVertices, color, w, …) 
•             <Backtrack processing for tree edge vw, using wAns> 
•         else 
•             <Checking for nontree edge vw> 
•         remAdj=rest(remAdj); 
•     <Postorder processing of vertex v, including final computation of ans> 
•     color[v]=black; 
•     return ans;

If partial search is used for a 
application, tests for termination 
may be inserted here.

Specialized for connected components:

    Parameter added

    Preorder processing inserted - cc[v] =ccNum




Breadth-First Search —

Skeleton

• Input: Array adjVertices for graph G 

• Output: Return value depends on application 

• void bfsSweep(intList[], adjVertices, int n, …) 

•     int ans; 

•     <Allocate color array and initialize to white> 

•     for each vertex v of G, in some order 

•         if(color[v]==white) 

•             void bfs(adjVertices, color, v, …); 

•        // continue loop 

•     return;



Breadth-First Search —

Skeleton

• void bfs(intList[] adjVertices, int[] color, int v, …) 
•     int w; intList remAdj; Queue pending; 
•     color[v]=gray;  enqueue(pending, v); 
•     while(pending is nonempty) 
•         w=dequeue(pending); remAdj=adjVertices[w]; 
•         while(remAdj!=nil) 
•             x=first(remAdj); 
•             if(color[x]==while) 
•                 color[x]=gray; enqueue(pending, x); 
•             remAdj=rest(remAdj); 
•         <processing of vertex w> 
•         color[w]=black; 
•     return

Can be further generalized



DFS v.s. BFS Search
• Processing opportunities for a node 

• Depth-first: 2


• At discovering


• At finishing


• Breadth-first: only 1, when de-queued


• At the second processing opportunity for the DFS, the 
algorithm can make use of information about the 
descendants of the current node.



Time Relation on 

Changing Color

• Keeping the order in which vertices are encountered for the first or last 
time 

• A global integer time: 0 as the initial value, incremented with each 
color changing for any vertex, and the final value is 2n 

• Array discoverTime: the i th element records the time vertex vi turns 
into gray 


• Array finishTime: the i th element records the time vertex vi turns into 
black 


• The active interval for vertex v, denoted as active(v), is the duration 
while v is gray, that is: 


• discoverTime[v], …, finishTime[v]



Depth-First Search Trace
• General DFS skeleton modified to compute discovery and finishing 

times and “construct” the depth-first search forest. 

• int dfsTraceSweep(intList[] adjVertices, int n, int[] discoverTime, int[] 
finishTime, int[] parent) 

•     int ans; int time=0; 

•     <Allocate color array and initialize to white> 

•     for each vertex v of G, in some order 

•         if(color[v]==white) 

•             parent[v]=-1 

•             int vAns=dfsTrace(adjVertices, color, v, discoverTime, finishTime, 
parent, time); 

•         //continue loop 

•     return ans;



Depth-First Search Trace
• int dfsTrace(intList[] adjVertices, int[] color, int v, int[] discoverTime, 

int[] finishTime, int[] parent, int time) 
•     int w; intList remAdj; int ans; 
•     color[v]=gray; time++; discoverTime[v]=time; 
•     remAdj=adjVertices[v]; 
•     while(remAdj != nil) 
•         w=first(remAdj); 
•         if(color[w]==white) 
•             parent[w]=v; 
•             Int wAns=dfs(adjVertices, color, w, discoverTime, finishTime, 

parent, time); 
•         else  <Checking for nontree edge vw> 
•         remAdj=rest(remAdj); 
•     time++; finishTime[v]=time; 
•     color[v]=black; 
•     Return ans;
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Properties of Active 
Intervals(1)

• If w is a descendant of v in the DFS forest, then active(w)⊆active(v), 
and the inclusion is proper if w≠v.  

• Proof: 

• Define a partial order <: w<v iff. w is a proper descendants of v in its 
DFS tree. The proof is by induction on <. 


• If v is minimal. The only descendant of v is itself. Trivial. 


• Assume that for all x<v, if w is a descendant of x, then 
active(w)⊆active(x). 


• Let w be any proper descendant of v in the DFS tree, there must be 
some x such that vx is a tree edge on the tree path to w, so w is a 
descendant of x. According to dfsTrace, we have active(x)⊂active(v), 
by inductive hypothesis, active(w)⊂active(v).



Properties of Active 
Intervals(2)

• If active(w)⊆active(v), then w is a descendant of v. And if 
active(w)⊂active(v), then w is a proper descendant of v.  

• That is: w is discovered while v is active. 

• Proof:  

• If w is not a descendant of v, there are two cases:


• v is a proper descendant of w, then active(v)⊂active(w), so, it is 
impossible that active(w)⊆active(v), contradiction.


• There is no ancestor/descendant relationship between v and w, 
then active(w) and active(v) are disjoint, contradiction.



Properties of Active 
Intervals(3)

• If v and w have no ancestor/descendant relationship in the DFS 
forest, then their active intervals are disjoint.  

• Proof: 

• If v and w are in different DFS tree, it is trivially true, since the trees 
are processed one by one. 


• Otherwise, there must be a vertex c, satisfying that there are tree 
paths c to v, and c to w, without edges in common. Let the leading 
edges of the two tree path are cy, cz, respectively. According to 
dfsTrace, active(y) and active(z) are disjoint. 


• We have active(v)∈active(y), active(w)∈active(z). So, active(v) and 
active(w) are disjoint.



Properties of Active 
Intervals(4)

• If edge vw ∈ EG, then 

• vw is a cross edge iff. active(w) entirely precedes 
active(v). 


• vw is a descendant edge iff. there is some third vertex 
x, such that active(w)⊂active(x)⊂active(v), 


• vw is a tree edge iff. active(w)⊂active(v), and there is no 
third vertex x, such that active(w)⊂active(x)⊂active(v), 


• vw is a back edge iff. active(v)⊂active(w),



Ancestor and Descendant
• That w is a descendant 

of v in the DFS forest 
means that there is a 
direct path from v to w 
in some DFS tree.  

• The path is also a path 
in G.  

• However, if there is a 
direct path from v to w 
in G, is w necessarily a 
descendant of v in the 
DFS forest? 



DFS Tree Path
• [White Path Theorem] w is a descendant of v in 

a DFS tree iff. At the time v is discovered (just 
to be changing color into gray), there is a path 
in G from v to w consisting entirely of white 
vertices.



Proof of White Path 
Theorem

• Proof 

• => all the vertices in the path are descendants of v.


• <= by induction on the length k of a white path from v 
to w.


• When k=0, v=w.


• For k>0, let P=(v, x1,x2...xk=w). There must be some vertex on 
P which is discovered during the active interval of v, e.g. x1, 
Let xi is earliest discovered among them. Divide P into P1 from 
v to xi, and P2 from xi to w. P2 is a white path with length less 
than k, so, by inductive hypothesis, w is a descendant of xi. 
Note: active(xi)⊆active(v), so xi is a descendant of v. By 
transitivity, w is a descendant of v. 



Thank you!

Q & A


