
Introduction to

Algorithm Design and Analysis

[12] Directed Acyclic Graph

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …

• Depth-first and breadth-first search
• Finding connected components

• General DFS/BFS skeleton
• Depth-first search trace

Applications of

Graph Decomposition

• Directed Acyclic Graph

• Topological order

• Critical path analysis

• Strongly Connected Component (SCC)

• Strong connected component and condensation

• The algorithm

• Leader of strong connected component

For Your Reference

Directed Acyclic Graph
(DAG)

1

42

6

3

8
7

9

5 1

42

6

3

8
7

9

5

A Directed Acyclic Graph Not a DAG

Topological Order

for G=(V, E)

• Topological number

• An assignment of
distinct integer 1,2,…,n
to the vertices of V

• For every vw∈E, the
topological number of v
is less than that of w.

• Reverse topological order

• Defined similarly
(“greater than”)

1

42

6

3

8
7

9

5

7
8

2

4

5
6

1

9

3

Existence of Topological
Order - a Negative Result

• If a directed graph G has a cycle, then G has no
topological order

• Proof

• [By contradiction]
1

42

6

3

8
7

9

5

x

y

For any given topological order,
all the vertices on both paths
must be in increasing order.
Contradiction results for any

assignments for x and y.

yx-path
xy-path

Reverse Topological
Ordering

• Specialized parameters

• Array topo, keeps the topological number
assigned to each vertex.

• Counter topoNum to provide the integer to be
used for topological number assignments

• Output

• Array topo as filled.

Reverse Topological
Ordering

• void dfsTopoSweep(intList[] adjVertices, int n, int[]
topo)

• int topoNum=0;

• <Allocate color array and initialize to white>

• for each vertex v of G, in some order

• if(color[v]==white)

• dfsTopo(adjVertices, color, v, topo, topoNum);

• //continue loop

• return;
For non-reverse topological
ordering, initialized as n+1

Reverse Topological
Ordering

• int dfsTopo(intList[] adjVertices, int[] color, int v, int[]
topo, int topoNum)

• int w; intList remAdj; color[v]=gray;
• remAdj=adjVertices[v];
• while(remAdj != nil)
• w=first(remAdj);
• if(color[w]==white)
• dfsTopo(adjVertices, color, w, topo, topoNum);
• remAdj=rest(remAdj);
• topoNum++; topo[v]=topoNum;
• color[v]=black;
• return;

Obviously, in Θ(m+n)

Filling topo is a post-order
processing, so, the earlier

discovered vertex has
relatively greater top number

Reverse Topological
Ordering

• For an “end node”

• Easy to decide

• Acyclic

• There is always an end

• Everyone becomes an end
B

D

cA

structural end

structural end

structural end

…

logical end

(when B, C, D finished)

Correctness of the
Algorithm

• If G is a DAG with n vertices, the procedure dfsTopoSweep
computes a reverse topological order for G in the array topo.

• Proof

• The procedure dfsTopo is called exactly once for a vertex,
so, the numbers in topo must be distinct in the range
1,2,...n.

• For any edge vw, vw can’t be a back edge (otherwise, a
cycle is formed). For any other edge types, we have
finishTime(v)>finishTime(w), so, topo(w) is assigned earlier
than topo(v). Note that topoNum is incremented
monotonically, so, topo(v)>topo(w).

Existence of

Topological Order

• In fact, the proof of correctness of topological
ordering has proved that: DAG always has a
topological order.

• So, G has a topological ordering, iff. G is a
directed acyclic graph.

Task Scheduling
• Problem:

• Scheduling a project consisting of a set of
interdependent tasks to be done by one person.

• Solution:

• Establishing a dependency graph, the vertices
are tasks, and edge vw is included iff. the
execution of v depends on the completion of w,

• Making task scheduling according to the
topological order of the graph (if existing).

Task Scheduling: an Example

Project Optimization
Problem

• Observation
• In a critical path, vi-1, is a critical dependency of vi,

i.e., any delay in vi-1 will result in delay in vi.

• The time for entire project depends on the time for

the critical path.

• Reducing the time of an off-critical-path task is of

no help for reducing the total time for the project.

• The Problems
• Find the critical path in a DAG

• (Try to reduce the time for the critical path)

Assuming that parallel executions of tasks (vi) are
possible except for prohibited by interdependency.

This is a precondition.

Critical Path in a Task Graph
• Earliest start time (est) for a task v

• If v has no dependencies, the est is 0

• I v has dependencies, the est is the maximum of the earliest
finish time of its dependencies.

• Earliest finish time (eft) for a task v

• For any task: eft = est + duration

• Critical path in a project is a sequence of tasks: v0, v1, …, vk,
satisfying:

• v0 has no dependencies;

• For any vi=(i=1,2,…,k), vi-1 is a dependency of vi, such that est
of vi equals eft of vi-1;

• eft of vk, is maximum for all tasks in the project.

DAG with Weights

1

42

6

3

8
7

9

5

toast:2

choose:3

dress:6.5
eat:6

leave:1

coffee:4.5

wake:0

shower:8.5
juice:0.5

1

4

2

6
3

8

7

9
5

0
0

0

0

0

3

8.5

4.5

2

0.5

6.0

6.5

1

Done

Critical Path
Critical Subpath

Critical Path Finding - DFS
• Specialized parameters

• Array duration, keeps the execution time of each vertex.

• Array critDep, keeps the critical dependency of each
vertex.

• Array eft, keeps the earliest finished time of each vertex.

• Output

• Array topo, critDep, eft as filled.

• Critical path is built by tracing the output.

Critical Path - Case 1

Critical Path - Case 2

Critical Path by DFS
• void dfsCritSweep(intList[] adjVertices, int n,

int[] duration, int[] critDep, int[] eft)

• <Allocate color array and initialize to white>

• for each vertex v of G, in some order

• if(color[v]==white)

• dfsCrit(adjVertices, color, v, duration,
critDep, eft);

• //continue loop

• return;

Critical Path by DFS
• int dfsCrit(intList[] adjVertices, int[] color, int v, int[]

duration int[] critDep, int eft)
• int w; intList remAdj; int est=0;
• color[v]=gray; critDep[v]=-1; remAdj=adjVertices[v];
• while(remAdj != nil) w=first(remAdj);
• if(color[w]==white)
• dfsCrit(adjVertices, color, w, duration, critDep, eft);
• if (eft[w]≥est) est=eft[w]; critDep[v]=w;
• else//checking for nontree edge
• if (eft[w]≥est) est=eft[w]; critDep[v]=w;
• remAdj=rest(remAdj);
• eft[v]=est+duration[v]; color[v]=black;
• return;

When is the eft[w]
initialized?

Only black vertex

Analysis of

Critical Path Algorithm

• Correctness:

• When eft[w] is accessed in the while-loop, the w must
not be gray (otherwise, there is a cycle), so, it must be
black, with eft initialized.

• According to DFS, each entry in the eft array is assigned
a value exactly once. The value satisfies the definition of
eft.

• Complexity

• Simply same as DFS, that is Θ(n+m).

SCC: Strongly Connected
Component

Transpose Graph

Basic Idea - G

Original edge

Basic Idea - GT

SCC - An Example

Strong Component
Algorithm: Outline

• void strongComponents(intList[] adjvertices, int n, int[] scc)

• //Phase 1

• 1. intStack finishStack=create(n);

• 2. perform a depth-first search on G, using the DFS
skeleton. At postorder processing for vertex v, insert the
statement: push(finishStack, v)

• //Phase 2

• 3. Compute GT, the transpose graph, represented as
array adjTrans of adjacency list.

• 4. dfsTsweep(adjTrans, n, finishStack, scc);

• return Note: G and GT have the same SCC sets

Strong Component
Algorithm: Core

• void dfsTSweep(intList[] adjVertices, int n, intStack finishStack, int[] scc)

• <Allocate color array and initialize to white>

• while(finishStack is not empty)

• int v=top(finishStack);

• pop(finishStack);

• if(color[v]==white)

• dfsT(adjVertices, color, v, v, scc);

• return;

• void dfsT(intList[] adjTrans, int[] color, int v, int leader, int[] scc)

• Use the standard depth-first search skeleton. At postorder
processing for vertex v insert the statement:

• scc[v]=leader;

• Pass leader and scc into recursive calls.

Leader of a Strong
Component

• For a DFS, the first vertex discovered in a strong
component Si is called the leader of Si.

• Each DFS tree of a digraph G contains only complete
strong components of G, one or more.

• Proof: Applying White Path Theorem whenever the
leader of Si (i=1,2,...p) is discovered, starting with all
vertices being white.

• The leader of Si is the last vertex to finish among all
vertices of Si. (since all of them in the same DFS tree)

Path between SCCs

C1: The End Case

C2: The White Case

C2: The Black Case

Active Intervals
• If there is an edge from Si to Sj, then it is

impossible that the active interval of vj is
entirely after that of vi. (Note: for leader vi only)

• There is no path from a leader of a strong
component to any gray vertex.

• If there is a path from the leader v of a strong
component to any x in a different strong
component, v finishes later than x.

Correctness of Strong
Component Algorithm (1)

• In phase 2, each time a white vertex is popped from
finishStack, that vertex is the Phase 1 leader of a strong
component.

• The later finished, the earlier popped

• The leader is the first to get popped in the strong
component it belongs to

• If x popped is not a leader, then some other vertex in the
strong component has been visited previously. But not a
partial strong component can be in a DFS tree, so, x
must be in a completed DFS tree, and is not white.

Correctness of Strong
Component Algorithm (2)

• In phase 2, each depth-first search tree contains
exactly one strong component of vertices

• Only “exactly one” need to be proved

• Assume that vi, a phase 1 leader is popped. If
another component Sj is reachable from vi in GT,
there is a path in G from vj to vi. So, in phase 1, vj

finished later than vi, and popped earlier than vi in
phase 2. So, when vi popped, all vertices in Sj are
black. So, Sj are not contained in DFS tree
containing vi(Si).

Thank you!

Q & A

