Introduction to

Algorithm Design and Analysis

[12] Directed Acyclic Graph

Jingwei Xu https://ics.nju.edu.cn/~xjw/ Institute of Computer Software Nanjing University

In the last class ...

- Depth-first and breadth-first search
- Finding connected components
- General DFS/BFS skeleton
- Depth-first search trace

Applications of Graph Decomposition

- Directed Acyclic Graph
 - Topological order
 - Critical path analysis

- Strongly Connected Component (SCC)
 - Strong connected component and condensation
 - The algorithm
 - Leader of strong connected component

For Your Reference

Directed Acyclic Graph (DAG)

A Directed Acyclic Graph

Not a DAG

Topological Order for G=(V, E)

- Topological number
 - An assignment of distinct integer 1,2,...,n to the vertices of V
 - For every vw∈E, the topological number of v is less than that of w.

• Reverse topological order

 Defined similarly ("greater than")

Existence of Topological Order - a Negative Result

 If a directed graph G has a cycle, then G has no topological order

Proof

- [By contradiction]
 - ----> yx-path

· - - - - - ► xy-path

For any given topological order, all the vertices on both paths must be in increasing order. Contradiction results for any assignments for x and y.

- Specialized parameters
 - Array topo, keeps the topological number assigned to each vertex.
 - Counter topoNum to provide the integer to be used for topological number assignments

Output

• Array topo as filled.

- void dfsTopoSweep(intList[] adjVertices, int n, int[] topo)
- int topoNum=0;
- <Allocate color array and initialize to white>
- for each vertex v of G, in some order
- if(color[v]==white)
- dfsTopo(adjVertices, color, v, topo, topoNum);
- //continue loop
- return;

For non-reverse topological ordering, initialized as n+1

- int dfsTopo(intList[] adjVertices, int[] color, int v, int[] topo, int topoNum)
- int w; intList remAdj; color[v]=gray;
- remAdj=adjVertices[v];
- while(remAdj != nil)
- w=first(remAdj);
- if(color[w]==white)
- dfsTopo(adjVertices, color, w, topo, topoNum);
- remAdj=rest(remAdj);
- topoNum++; topo[v]=topoNum;
- color[v]=black;
- return;

Filling topo is a post-order processing, so, the earlier discovered vertex has relatively greater top number

Obviously, in $\Theta(m+n)$

- For an "end node"
 - Easy to decide
- Acyclic

Correctness of the Algorithm

• If G is a DAG with *n* vertices, the procedure *dfsTopoSweep* computes a reverse topological order for G in the array *topo*.

• Proof

- The procedure dfsTopo is called exactly once for a vertex, so, the numbers in *topo* must be distinct in the range 1,2,...n.
- For any edge vw, vw can't be a back edge (otherwise, a cycle is formed). For any other edge types, we have finishTime(v)>finishTime(w), so, topo(w) is assigned earlier than topo(v). Note that topoNum is incremented monotonically, so, topo(v)>topo(w).

Existence of Topological Order

 In fact, the proof of correctness of topological ordering has proved that: DAG always has a topological order.

So, G has a topological ordering, iff. G is a directed acyclic graph.

Task Scheduling

- Problem:
 - Scheduling a project consisting of a set of interdependent tasks to be done by one person.

• Solution:

- Establishing a dependency graph, the vertices are tasks, and edge vw is included iff. the execution of v depends on the completion of w,
- Making task scheduling according to the topological order of the graph (if existing).

Task Scheduling: an Example

Project Optimization Problem

Assuming that parallel executions of tasks (v_i) are possible except for prohibited by interdependency.

Observation

- In a critical path, v_{i-1}, is a critical dependency of v_i,
 i.e., any delay in v_{i-1} will result in delay in v_i.
- The time for entire project depends on the time for the critical path.
- Reducing the time of an off-critical-path task is of no help for reducing the total time for the project.

This is a precondition.

- The Problems
 - Find the critical path in a DAG
 - (Try to reduce the time for the critical path)

Critical Path in a Task Graph

- Earliest start time (est) for a task v
 - If v has no dependencies, the est is 0
 - I v has dependencies, the est is the maximum of the earliest finish time of its dependencies.
- Earliest finish time (eft) for a task v
 - For any task: eft = est + duration
- Critical path in a project is a sequence of tasks: v₀, v₁, ..., v_k, satisfying:
 - v₀ has no dependencies;
 - For any v_i=(i=1,2,...,k), v_{i-1} is a dependency of v_i, such that est of v_i equals eft of v_{i-1};
 - eft of v_k , is maximum for all tasks in the project.

DAG with Weights

Critical Path Finding - DFS

- Specialized parameters
 - Array duration, keeps the execution time of each vertex.
 - Array critDep, keeps the critical dependency of each vertex.
 - Array eft, keeps the earliest finished time of each vertex.
- Output
 - Array topo, critDep, eft as filled.
- Critical path is built by tracing the output.

Critical Path - Case 1

- and the path including edge vw is recognized as the critical path for tast v
- and the eft(*v*) is updated accordingly

Critical Path - Case 2

Checking *w*:

- est(*v*) is updated if eft(*w*) is larger than est(*v*)
- and the path including edge *vw* is recognized as the critical path for task *v*
- and the eft(v) is updated accordingly

Critical Path by DFS

- void dfsCritSweep(intList[] adjVertices, int n, int[] duration, int[] critDep, int[] eft)
- <Allocate color array and initialize to white>
- for each vertex v of G, in some order
- if(color[v]==white)
- dfsCrit(adjVertices, color, v, duration, critDep, eft);
- //continue loop
- return;

Critical Path by DFS

- int dfsCrit(intList[] adjVertices, int[] color, int v, int[] duration int[] critDep, int eft)
- Int w; intList remAdj; int est=0;
- color[v]=gray; critDep[v]=-1; remAdj=adjVertices[v];
- while(remAdj != nil) w=first(remAdj);
- if(color[w]==white)
- dfsCrit(adjVertices, color, w, duration, critDep, eft);
- if (eft[w]≥est) est=eft[w]; critDep[v]=w;
- else//checking for nontree edge
- if (eft[w]≥est) est=eft[w]; critDep[v]=w;
- remAdj=rest(remAdj);
- eft[v]=est+duration[v]; color[v]=black;
- return;

When is the eft[w] initialized? Only black vertex

Analysis of Critical Path Algorithm

• Correctness:

- When eft[w] is accessed in the while-loop, the w must not be gray (otherwise, there is a cycle), so, it must be black, with eft initialized.
- According to DFS, each entry in the *eft* array is assigned a value exactly once. The value satisfies the definition of *eft*.
- Complexity
 - Simply same as DFS, that is $\Theta(n+m)$.

SCC: Strongly Connected Component

Transpose Graph

Tranpose Graph G^T Connected Components unchanged according to vertices **Condensation Graph** $G\downarrow$

But, DFS tree changed

Basic Idea - G

SCC - An Example

Strong Component Algorithm: Outline

- void strongComponents(intList[] adjvertices, int n, int[] scc)
- I/Phase 1
- 1. intStack finishStack=create(n);
- 2. perform a depth-first search on G, using the DFS skeleton. At postorder processing for vertex v, insert the statement: push(finishStack, v)

I/Phase 2

- 3. Compute G^T, the transpose graph, represented as array adjTrans of adjacency list.
- 4. dfsTsweep(adjTrans, n, finishStack, scc);
- return Note: G and G^T have the same SCC sets

Strong Component Algorithm: Core

- void dfsTSweep(intList[] adjVertices, int n, intStack finishStack, int[] scc)
- <Allocate color array and initialize to white>
- while(finishStack is not empty)
- int v=top(finishStack);
- pop(finishStack);
- if(color[v]==white)
- dfsT(adjVertices, color, v, v, scc);
- return;
- void dfsT(intList[] adjTrans, int[] color, int v, int leader, int[] scc)
- Use the standard depth-first search skeleton. At postorder processing for vertex v insert the statement:
- scc[v]=leader;
- Pass leader and scc into recursive calls.

Leader of a Strong Component

- For a DFS, the first vertex discovered in a strong component S_i is called the leader of S_i.
- Each DFS tree of a digraph G contains only complete strong components of G, one or more.
 - Proof: Applying White Path Theorem whenever the leader of S_i (i=1,2,...p) is discovered, starting with all vertices being white.
- The leader of S_i is the last vertex to finish among all vertices of S_i . (since all of them in the same DFS tree)

Path between SCCs

Active Intervals

- If there is an edge from S_i to S_j, then it is impossible that the active interval of v_j is entirely after that of v_i. (Note: for leader v_i only)
 - There is no path from a leader of a strong component to any gray vertex.
 - If there is a path from the leader v of a strong component to any x in a different strong component, v finishes later than x.

Correctness of Strong Component Algorithm (1)

- In phase 2, each time a white vertex is popped from finishStack, that vertex is the Phase 1 leader of a strong component.
 - The later finished, the earlier popped
 - The leader is the first to get popped in the strong component it belongs to
 - If x popped is not a leader, then some other vertex in the strong component has been visited previously. But not a partial strong component can be in a DFS tree, so, x must be in a completed DFS tree, and is not white.

Correctness of Strong Component Algorithm (2)

- In phase 2, each depth-first search tree contains exactly one strong component of vertices
 - Only "exactly one" need to be proved
 - Assume that v_i, a phase 1 leader is popped. If another component S_j is reachable from v_i in G^T, there is a path in G from v_j to v_i. So, in phase 1, v_j finished later than v_i, and popped earlier than v_i in phase 2. So, when v_i popped, all vertices in S_j are black. So, S_j are not contained in DFS tree containing v_i(S_j).

Thank you! Q&A