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In the last class …

• Depth-first and breadth-first search 
• Finding connected components 

• General DFS/BFS skeleton 
• Depth-first search trace



Applications of 

Graph Decomposition

• Directed Acyclic Graph 

• Topological order


• Critical path analysis


• Strongly Connected Component (SCC) 

• Strong connected component and condensation


• The algorithm


• Leader of strong connected component



For Your Reference



Directed Acyclic Graph 
(DAG)
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A Directed Acyclic Graph Not a DAG



Topological Order

for G=(V, E)

• Topological number 

• An assignment of 
distinct integer 1,2,…,n 
to the vertices of V


• For every vw∈E, the 
topological number of v 
is less than that of w.


• Reverse topological order 

• Defined similarly 
(“greater than”)
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Existence of Topological 
Order - a Negative Result

• If a directed graph G has a cycle, then G has no 
topological order 

• Proof 

• [By contradiction]
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For any given topological order, 
all the vertices on both paths 
must be in increasing order. 
Contradiction results for any 

assignments for x and y.

yx-path
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Reverse Topological 
Ordering

• Specialized parameters 

• Array topo, keeps the topological number 
assigned to each vertex.


• Counter topoNum to provide the integer to be 
used for topological number assignments


• Output 

• Array topo as filled.



Reverse Topological 
Ordering

• void dfsTopoSweep(intList[] adjVertices, int n, int[] 
topo) 

•     int topoNum=0; 

•     <Allocate color array and initialize to white> 

•     for each vertex v of G, in some order 

•         if(color[v]==white) 

•             dfsTopo(adjVertices, color, v, topo, topoNum); 

•         //continue loop 

•     return;
For non-reverse topological 
ordering, initialized as n+1



Reverse Topological 
Ordering

• int dfsTopo(intList[] adjVertices, int[] color, int v, int[] 
topo, int topoNum) 

•     int w; intList remAdj; color[v]=gray; 
•     remAdj=adjVertices[v]; 
•     while(remAdj != nil) 
•         w=first(remAdj); 
•         if(color[w]==white) 
•             dfsTopo(adjVertices, color, w, topo, topoNum); 
•        remAdj=rest(remAdj); 
•     topoNum++; topo[v]=topoNum; 
•     color[v]=black; 
•     return;

Obviously, in Θ(m+n)

Filling topo is a post-order 
processing, so, the earlier 

discovered vertex has 
relatively greater top number



Reverse Topological 
Ordering

• For an “end node” 

• Easy to decide


• Acyclic 

• There is always an end


• Everyone becomes an end
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structural end

structural end

structural end

…

logical end

(when B, C, D finished)



Correctness of the 
Algorithm

• If G is a DAG with n vertices, the procedure dfsTopoSweep 
computes a reverse topological order for G in the array topo.  

• Proof 

• The procedure dfsTopo is called exactly once for a vertex, 
so, the numbers in topo must be distinct in the range 
1,2,...n. 


• For any edge vw, vw can’t be a back edge (otherwise, a 
cycle is formed). For any other edge types, we have 
finishTime(v)>finishTime(w), so, topo(w) is assigned earlier 
than topo(v). Note that topoNum is incremented 
monotonically, so, topo(v)>topo(w). 



Existence of 

Topological Order

• In fact, the proof of correctness of topological 
ordering has proved that: DAG always has a 
topological order. 

• So, G has a topological ordering, iff. G is a 
directed acyclic graph.



Task Scheduling
• Problem: 

• Scheduling a project consisting of a set of 
interdependent tasks to be done by one person.


• Solution: 

• Establishing a dependency graph, the vertices 
are tasks, and edge vw is included iff. the 
execution of v depends on the completion of w,


• Making task scheduling according to the 
topological order of the graph (if existing).



Task Scheduling: an Example



Project Optimization 
Problem

• Observation 
• In a critical path, vi-1, is a critical dependency of vi, 

i.e., any delay in vi-1 will result in delay in vi.

• The time for entire project depends on the time for 

the critical path.

• Reducing the time of an off-critical-path task is of 

no help for reducing the total time for the project.

• The Problems 
• Find the critical path in a DAG

• (Try to reduce the time for the critical path)

Assuming that parallel executions of tasks (vi) are 
possible except for prohibited by interdependency.

This is a precondition.



Critical Path in a Task Graph
• Earliest start time (est) for a task v 

• If v has no dependencies, the est is 0


• I v has dependencies, the est is the maximum of the earliest 
finish time of its dependencies.


• Earliest finish time (eft) for a task v 

• For any task: eft = est + duration


• Critical path in a project is a sequence of tasks: v0, v1, …, vk, 
satisfying: 

• v0 has no dependencies;


• For any vi=(i=1,2,…,k), vi-1 is a dependency of vi, such that est 
of vi equals eft of vi-1;


• eft of vk, is maximum for all tasks in the project.



DAG with Weights
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Critical Path Finding - DFS
• Specialized parameters 

• Array duration, keeps the execution time of each vertex.


• Array critDep, keeps the critical dependency of each 
vertex.


• Array eft, keeps the earliest finished time of each vertex.


• Output 

• Array topo, critDep, eft as filled.


• Critical path is built by tracing the output.



Critical Path - Case 1



Critical Path - Case 2



Critical Path by DFS
• void dfsCritSweep(intList[] adjVertices, int n, 

int[] duration, int[] critDep, int[] eft) 

•     <Allocate color array and initialize to white> 

•     for each vertex v of G, in some order 

•         if(color[v]==white) 

•             dfsCrit(adjVertices, color, v, duration, 
critDep, eft); 

•         //continue loop 

•     return;



Critical Path by DFS
• int dfsCrit(intList[] adjVertices, int[] color, int v, int[] 

duration int[] critDep, int eft) 
•     int w; intList remAdj; int est=0; 
•     color[v]=gray; critDep[v]=-1; remAdj=adjVertices[v]; 
•     while(remAdj != nil) w=first(remAdj); 
•         if(color[w]==white) 
•             dfsCrit(adjVertices, color, w, duration, critDep, eft); 
•             if (eft[w]≥est) est=eft[w]; critDep[v]=w; 
•         else//checking for nontree edge 
•             if (eft[w]≥est) est=eft[w]; critDep[v]=w; 
•        remAdj=rest(remAdj); 
•     eft[v]=est+duration[v]; color[v]=black; 
•     return;

When is the eft[w] 
initialized?


Only black vertex



Analysis of 

Critical Path Algorithm

• Correctness: 

• When eft[w] is accessed in the while-loop, the w must 
not be gray (otherwise, there is a cycle), so, it must be 
black, with eft initialized.


• According to DFS, each entry in the eft array is assigned 
a value exactly once. The value satisfies the definition of 
eft.


• Complexity 

• Simply same as DFS, that is Θ(n+m).



SCC: Strongly Connected 
Component



Transpose Graph



Basic Idea - G

Original edge



Basic Idea - GT



SCC - An Example



Strong Component 
Algorithm: Outline

• void strongComponents(intList[] adjvertices, int n, int[] scc) 

• //Phase 1 

•     1. intStack finishStack=create(n); 

•     2. perform a depth-first search on G, using the DFS 
skeleton. At postorder processing for vertex v, insert the 
statement: push(finishStack, v) 

• //Phase 2 

•     3. Compute GT, the transpose graph, represented as 
array adjTrans of adjacency list. 

•     4. dfsTsweep(adjTrans, n, finishStack, scc); 

•     return Note: G and GT have the same SCC sets



Strong Component 
Algorithm: Core

• void dfsTSweep(intList[] adjVertices, int n, intStack finishStack, int[] scc) 

•     <Allocate color array and initialize to white> 

•     while(finishStack is not empty) 

•         int v=top(finishStack); 

•         pop(finishStack); 

•         if(color[v]==white) 

•             dfsT(adjVertices, color, v, v, scc); 

•     return; 

• void dfsT(intList[] adjTrans, int[] color, int v, int leader, int[] scc) 

•     Use the standard depth-first search skeleton. At postorder 
processing for vertex v insert the statement: 

•         scc[v]=leader; 

•         Pass leader and scc into recursive calls.



Leader of a Strong 
Component

• For a DFS, the first vertex discovered in a strong 
component Si is called the leader of Si. 

• Each DFS tree of a digraph G contains only complete 
strong components of G, one or more. 

• Proof: Applying White Path Theorem whenever the 
leader of Si (i=1,2,...p) is discovered, starting with all 
vertices being white. 


• The leader of Si is the last vertex to finish among all 
vertices of Si. (since all of them in the same DFS tree) 



Path between SCCs



C1: The End Case



C2: The White Case



C2: The Black Case



Active Intervals
• If there is an edge from Si  to Sj, then it is 

impossible that the active interval of vj is 
entirely after that of vi. (Note: for leader vi only)  

• There is no path from a leader of a strong 
component to any gray vertex.


• If there is a path from the leader v of a strong 
component to any x in a different strong 
component, v finishes later than x.



Correctness of Strong 
Component Algorithm (1)

• In phase 2, each time a white vertex is popped from 
finishStack, that vertex is the Phase 1 leader of a strong 
component.  

• The later finished, the earlier popped


• The leader is the first to get popped in the strong 
component it belongs to


• If x popped is not a leader, then some other vertex in the 
strong component has been visited previously. But not a 
partial strong component can be in a DFS tree, so, x 
must be in a completed DFS tree, and is not white. 



Correctness of Strong 
Component Algorithm (2)

• In phase 2, each depth-first search tree contains 
exactly one strong component of vertices 

• Only “exactly one” need to be proved


• Assume that vi, a phase 1 leader is popped. If 
another component Sj is reachable from vi in GT, 
there is a path in G from vj  to vi. So, in phase 1, vj  

finished later than vi, and popped earlier than vi in 
phase 2. So, when vi popped, all vertices in Sj are 
black. So, Sj are not contained in DFS tree 
containing vi(Si). 



Thank you!

Q & A


