Introduction to

Algorithm Design and Analysis

[13] Undirected Graph

Jingwei Xu https://ics.nju.edu.cn/~xjw Institute of Computer Software Nanjing University

In the last class ...

- Directed Acyclic Graph
 - Topological order
 - Critical path analysis

- Strongly Connected Component (SCC)
 - Strong connected component and condensation
 - Finding SCC based on DFS

DFS on Undirected Graph

- Undirected Graph
 - Symmetric Digraph
 - Undirected Graph DFS Skeleton
- Biconnected Components
 - Articulation Points
 - Bridge
- Other undirected graph problems
 - Orientation of an undirected graph
 - Simplified Minimum Spanning Tree

What is Different for "Undirected"

- Characteristics of undirected graph traversal
 - One edge may be traversed for two times in opposite directions.
- For an undirected graph, DFS provides an orientation for each of its edges
 - Oriented in the direction in which they are first encountered.

Edges in DFS

- Cross edge
 Not existing
- Back edge
 - Back to the direct parent:
 second encounter
 - Otherwise: first
 encounter -
- Forward edge
 - Always second
 encounter, and first time as back edge

Modifications to the DFS Skeleton

- All the second encounter are bypassed.
- So, the only substantial modification is for the possible back edges leading to an ancestor, but not direct parent.
- We need know the parent, that is, the direct ancestor, for the vertex to be processed.

DFS Skeleton for Undirected Graph

- void dfsSweep(intList[] adjVertices, int n, ...)
- int ans;
- <Allocate color array and initialize to white>
- for each vertex v of G, in some order
- if(color[v]==white)
- Int vAns=dfs(adjVertices, color, v, -1,...);
- Process vAns>
- //continue loop
- return ans;

DFS Skeleton for Undirected Graph

- int dfs(intList[] adjVertices, int[] color, int v, int p,...)
- int w; intList remAdj; int ans; color[v]=gray;
- Preorder processing of vertex v>
- remAdj=adjVertices[v];
- while(remAdj != nil)
- w=first(remAdj);
- if(color[w]==white)
- <Exploratory processing for tree edge vw>
- dfs(adjVertices, color, w, v, ...);
- <Backtrack processing for tree edge vw, using wAns>
- else if(color[w]==gray && w!=p)
- <Checking for nontree edge vw>
- remAdj=rest(remAdj);
- <Postorder processing of vertex v, including final computation of ans>
- color[v]=black;
- return ans;

Complexity of Undirected DFS

• Θ(m+n)

- If each inserted statement for specialized application runs in constant time
- The same with directed graph DFS
- Extra space Θ(n)
 - For array color, or activation frames of recursion

Biconnected Graph

- Being connected
 - Tree: acyclic, least (cost) connected
 - Node/edge connected: fault-tolerant connection
- Articulation point (2-node connected)
 - v is an articulation point if deleting v leads to disconnection
- Bridge (2-edge connected)
 - uv is a bridge if deleting uv leads to disconnection

Definition Transformation

- "Short definition"
 - Deleting v leads to disconnection
- "Long definition"
 - If there exist nodes w and x, such that v is in every path from w to x (w and x are vertices different from v)
- "Long definition" or "DFS definition"
 - No back edges linking any vertex in some w-rooted subtree and any ancestor of v

Articulation Point Algorithm

v is an articulation point iff no back edges linking any vertex in *some* w-rooted subtree and any ancestor of v.

If v is the articulation point farthest away from the root on *the* branch, then one bicomponent is detected.

Subtree rooted at w

Back edge

Updating the value of back

- v first discovered
 - back=discoverTime(v)
- Trying to explore, but a back edge vw from v encountered
 - back=min(back, discoverTime(w))
- Backtracking from w to v
 - back=min(back, wback)

The back value of v is the smallest discover time a back edge "sees" from any subtree of v.

second back edge encountered

Keeping the Track of Backing

• Tracking data

 For each vertex v, a local variable back is used to store the required information, as the value of discoverTime of some vertex.

• Testing for bicomponent

- At backtracking from w to v, the condition implying a bicomponent is:
 - wBack ≥ discoverTime(v)
 (where wback is the returned back value for w)

When back is no less than the discover time of v, there is at least one subtree of v connected to other part of the graph only by v.

Articulation Point Algorithm

Algorithm 12: ARTICULATION-POINT-DFS(v)

- 1 $v.color := \mathsf{GRAY}$;
- 2 time := time + 1;
- $\mathbf{3} \ v.discoverTime := time ;$
- 4 v.back := v.discoverTime;
- 5 for each neighbor w of v do
- 6 if w.color = WHITE then
 - w.back := ARTICULATION-POINT-DFS(w);
- 8 if $w.back \ge v.discoverTime$ then
 - Output v as an articulation point ;

```
10 v.back := min\{v.back, w.back\};
```

if vw is BE then

```
11 else
```

7

9

12

13

/* w 是 v 非父节点的祖先节点 */

```
v.back := min\{v.back, w.discoverTime\};
```

14 return back ;

Correctness

- We have seen that:
 - If v is the articulation point farthest away from the root on the branch, then one bicomponent is detected.
- So, we need only prove that:
 - In a DFS tree, a vertex (not root) v is an articulation point if and only if (1) v is not a leaf; (2) some subtree of v has no back edge incident with a proper ancestor of v.

Characteristics of Articulation Point

- In a DFS tree, a vertex (not root) v is an articulation point if and only if (1) v is not a leaf; (2) some subtree of v has no back edge incident with a proper ancestor of v.
- <= Trivial

•=>

- By definition, v is on every path between some x, y (different from v).
- At least one of x, y is a proper descendent of v (otherwise, x<->root<->y not containing v).
- By contradiction, suppose that every subtree of v has a back edge to a proper ancestor of v, we can find a xy-path not containing v for all possible cases (only 2 cases)

Case 1

Case 1.2: another is an ancestor of *v*

suppose that every subtree of v has a back edge to a proper ancestor of v, and, exactly one of x, y is a descendant of v.

Case 1.1: another is not an ancestor of *v*

Case 2

suppose that **every** subtree of *v* has a back edge to a proper ancestor of *v*, and, both *x*, *y* are descendants of *v*.

What about the root?

- One single DFS tree
 - We only consider each connected component
- Root AP = Two or more sub-trees
 - The root is an articulation point

Defining the Bridge

Short definition

- Removing uv leading to disconnection
- Long definition
 - Edge uv is a bridge iff node u and v are connected only by uv

DFS Definition

- Edge uv is a tree edge in DFS
- Three is no subtree rooted at v to any proper ancestor of v (including u)

Bridge Algorithm

Algorithm 11: BRIDGE-DFS(u)

1 $u.color := \mathsf{GRAY}$; **2** time := time + 1; $\mathbf{3} \ u.discoverTime := time;$ 4 u.back := u.discoverTime; 5 foreach neighbor v of u do if v.color = WHITE then 6 BRIDGE-DFS(v); 7 $u.back := min\{u.back, v.back\};$ 8 if v.back > u.discoverTime then 9 Output uv as a bridge; 10 else 11 /* v 是 u 非父节点的祖先节点 */ if uv is BE then 12 $u.back := min\{u.back, v.discoverTime\}$; 13

Other Traversal Problems

- Orientation of an undirected graph
 - Give each edge a direction
 - Satisfying pre-specified constraints
 - E.g., the "in-degree of each vertex is at least 1"
- Possible or not?
 - If possible, how to?
- As for "in-degree \geq 1"
 - Orientation possible iff. the graph has at least a circle
 - Find the end point of some back edge
 - A second DFS from this end point

Other Traversal Problems

MST: Minimum Spanning Tree

- Get MST in O(m+n) time
 - Given that edges weights are only 1 and 2
- Graph traversal is sufficient
 - DFS over "weight 1 edges" only
 - DFS over "weight 2 edges" only

Thank you! Q&A