Introduction to

Algorithm Design and Analysis

[13] Undirected Graph

Jingwei Xu
https://ics.nju.edu.cn/~xjw

Institute of Computer Software
Nanjing University

https://ics.nju.edu.cn/~xjw

INn the last class ...

® Directed Acyclic Graph
e Topological order

e Critical path analysis

® Strongly Connected Component (SCC)
e Strong connected component and condensation

e Finding SCC based on DFS

DFS on Undirected Graph

® Undirected Graph
e Symmetric Digraph
e Undirected Graph DFS Skeleton
® Biconnected Components
* Articulation Points
* Bridge
® Other undirected graph problems
* QOrientation of an undirected graph

e Simplified Minimum Spanning Tree

What is Different for
“Undirected”

® Characteristics of undirected graph traversal

e One edge may be traversed for two times in
opposite directions.

® For an undirected graph, DFS provides an
orientation for each of its edges

e Oriented in the direction in which they are first
encountered.

Edges in DFS

* Cross edge

o Not existing

» Back edge

o Back to the direct parent:

second encounter

o Otherwise: first
encounter

» Forward edge

o Always second
encounter, and first time

as back edge

Q

Modifications to
the DFS Skeleton

® All the second encounter are bypassed.

® So, the only substantial modification is for the
possible back edges leading to an ancestor,
but not direct parent.

® \We need know the parent, that is, the direct
ancestor, for the vertex to be processed.

DFS Skeleton for
Undirected Graph

® void dfsSweep(intList[] adjVertices, intn, ...)
Int ans;
<Allocate color array and initialize to white>
for each vertex v of G, in some order
if(color[v]==white)
Int vAns=dfs(adjVertices, color, v, -1,...);
<Process vAns>

//continue loop

return ans;

DFS Skeleton for
Undirected Graph

® int dfs(intList[] adjVertices, int[] color, int v, int p,...)
int w; intList remAdj; int ans; color[v]=gray;
<Preorder processing of vertex v>
remAdj=adjVertices|v];
while(remAdj != nil)
w=first(remAdj);
if(color[w]==white)
<Exploratory processing for tree edge vw>
dfs(adjVertices, color, w, v, ...);
<Backtrack processing for tree edge vw, using wAns>
else if(color[w]==gray && w!=p)
<Checking for nontree edge vw>
remAdj=rest(remAd;);
<Postorder processing of vertex v, including final computation of ans>
color[v]=black;
return ans;

Complexity of
Undirected DFS

® O(m+n)

e |f each inserted statement for specialized
application runs in constant time

e The same with directed graph DFS
® Extra space O(n)

e For array color, or activation frames of
recursion

Biconnected Graph

® Being connected

e Tree: acyclic, least (cost) connected

e Node/edge connected: fault-tolerant connection
® Articulation point (2-node connected)

e v is an articulation point if deleting v leads to
disconnection

® Bridge (2-edge connected)

e uv Is a bridge if deleting uv leads to disconnection

Articulation Points

Definition Transformation

® “Short definition”
* Deleting v leads to disconnection
® “Long definition”

e |If there exist nodes w and x, such that v is in every path
from w to x (w and x are vertices different from v)

® “L ong definition” or “DFS definition”

* No back edges linking any vertex in some w-rooted
subtree and any ancestor of v

Articulation Point Algorithm

Ancestors of v

) v is an articulation point iff no
X back edges linking any vertex in
some w-rooted subtree and any
ancestor of v.

. \ If v is the articulation point
| farthest away from the root on
\ | the branch, then one
\ \ bicomponent is detected.

/ / b . Subtree rooted at w

< 7 Back edge

—— ——

Updating the value of back

® v first discovered

e pback=discoverTime(v)

® Trying to explore, but a back edge vw from v
encountered

e back=min(back, discoverTime(w))

® Backtracking from w to v The back value of v is
the smallest discover
e back=min(back, wback) time a back edge “sees”

from subtree of v.

Example

second back edge encountered

1/1

2/2

first back edge encountered

Example

8/5 @ /5
gBack=discoverTime(B), @

so, first bicomponent 5/4 e &

detected. \@
-

Il

backtracking:

Keeping the Track
of Backing

® Tracking data

e For each vertex v, a local variable back is used to
store the required information, as the value of
discoverTime of some vertex.

® Testing for bicomponent

* At backtracking from w to v, the condition implying a

bicomponent is: When back is no less than

| | the discover time of v, there
* wBack = discoverTime(v) is at least one subtree of v

(where wback is the returned connected to other part of
back value for w) the graph only by v.

Backtracking from B to E:
bBack=discoverTime(E), so, the second ~~__
bicomponent is detect

Backtracking from E to F:)
eBack>discoverTime(F), so, the third
bicomponent is detect

Articulation Point Algorithm

Algorithm 12: ARTICULATION-POINT-DFS(v)

1 v.color := GRAY ;

2 time :=time + 1 ;

3 v.discoverTime := time ;
a4 v.back := v.discoverTime :

5 foreach neighbor w of v do

6 if w.color = WHITE then
7 w.back := ARTICULATION-POINT-DFS(w) ;
8 if w.back > v.discoverTime then
9 L Output v as an articulation point :
10 v.back := min{v.back,w.back} ;
11 else
12 if vw is BE then /* w re v AFATH KRBT R */
13 L v.back := min{v.back,w.discoverTime} ;

14 return back ;

Correctness

® We have seen that:

e If vis the articulation point farthest away from the
root on the branch, then one bicomponent is
detected.

® S0, we need only prove that:

e In a DFS tree, a vertex (not root) v is an articulation
point if and only if (1) v is not a leaf; (2) some
subtree of v has no back edge incident with a
proper ancestor of v.

Characteristics of
Articulation Point

® In a DFS tree, a vertex (not root) v is an articulation point if
and only if (1) v is not a leaf; (2) some subtree of v has no back
edge incident with a proper ancestor of v.

® <= Trivial
®=>

e By definition, v is on every path between some X, y (different
from v).

e At least one of x, y is a proper descendent of v (otherwise, x<-
>root<->y not containing v).

By contradiction, suppose that every subtree of v has a back
edge to a proper ancestor of v, we can find a xy-path not
containing v for all possible cases (only 2 cases)

Case 1

/O\\ suppose that
every subtree of

v has a back
edge to a proper
O ancestor of v,
and, exactly one
of x, yis a
descendant of v.

Case 1.2: another
is an ancestor of v

X

Case 1.1: another is
not an ancestor of v

Case 2

suppose that every
subtree of v has a back
edge to a proper ancestor
of v, and, both x, y are
descendants of v.

What about the root?

® One single DFS tree

* We only consider each connected component
® Root AP =Two or more sub-trees

* The root is an articulation point

Is an articulation
point

Not an
articulation point

Defining the Bridge

® Short definition

* Removing uv leading to
disconnection

® | ong definition

 Edge uv is a bridge iff node u
and v are connected only by
uv

® DFS Definition
e Edge uv is a tree edge in DFS

* Three is no subtree rooted at
v to any proper ancestor of v
(including u)

uRYtE 5%

Bridge Algorithm

Algorithm 11: BRIDGE-DFS(u)

1

2

3

4

5

10

11

12

13

u.color := GRAY ;

time : = time + 1 ;

u.discoverTime := time ;

w.back := u.discoverTime ;

foreach neighbor v of u do

if v.color = WHITE then
BRIDGE-DFS(v) ;

u.back := min{u.back,v.back} ;

if v.back > u.discoverTime then

L Output uv as a bridge ;

else
if uv is BE then

L u.back := min{u.back,v.discoverTime} ;

/ *

v

u T RHIHE T R */

Other Traversal Problems

® Orientation of an undirected graph
* Give each edge a direction

e Satisfying pre-specified constraints

* E.g., the “in-degree of each vertex is at least 1~
® Possible or not?
* |f possible, how to?
® As for “in-degree = 1”

* Orientation possible iff. the graph has at least a circle
* Find the end point of some back edge

A second DFS from this end point

Other Traversal Problems

MST: Minimum Spanning Tree

® Get MST in O(m+n) time

e (Given that edges weights are only 1 and 2
® Graph traversal is sufficient

e DFS over “weight 1 edges” only

e DFS over “weight 2 edges” only

Thank youl!
Q&A

