
Introduction to

Algorithm Design and Analysis

[13] Undirected Graph

Jingwei Xu

https://ics.nju.edu.cn/~xjw

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw

In the last class …
• Directed Acyclic Graph

• Topological order

• Critical path analysis

• Strongly Connected Component (SCC)

• Strong connected component and condensation

• Finding SCC based on DFS

DFS on Undirected Graph
• Undirected Graph

• Symmetric Digraph

• Undirected Graph DFS Skeleton

• Biconnected Components

• Articulation Points

• Bridge

• Other undirected graph problems

• Orientation of an undirected graph

• Simplified Minimum Spanning Tree

What is Different for
“Undirected”

• Characteristics of undirected graph traversal

• One edge may be traversed for two times in
opposite directions.

• For an undirected graph, DFS provides an
orientation for each of its edges

• Oriented in the direction in which they are first
encountered.

Edges in DFS

Modifications to

the DFS Skeleton

• All the second encounter are bypassed.

• So, the only substantial modification is for the
possible back edges leading to an ancestor,
but not direct parent.

• We need know the parent, that is, the direct
ancestor, for the vertex to be processed.

DFS Skeleton for
Undirected Graph

• void dfsSweep(intList[] adjVertices, int n, …)

• int ans;

• <Allocate color array and initialize to white>

• for each vertex v of G, in some order

• if(color[v]==white)

• Int vAns=dfs(adjVertices, color, v, -1,…);

• <Process vAns>

• //continue loop

• return ans;

DFS Skeleton for
Undirected Graph

• int dfs(intList[] adjVertices, int[] color, int v, int p,…)
• int w; intList remAdj; int ans; color[v]=gray;
• <Preorder processing of vertex v>
• remAdj=adjVertices[v];
• while(remAdj != nil)
• w=first(remAdj);
• if(color[w]==white)
• <Exploratory processing for tree edge vw>
• dfs(adjVertices, color, w, v, …);
• <Backtrack processing for tree edge vw, using wAns>
• else if(color[w]==gray && w!=p)
• <Checking for nontree edge vw>
• remAdj=rest(remAdj);
• <Postorder processing of vertex v, including final computation of ans>
• color[v]=black;
• return ans;

Complexity of

Undirected DFS

•Θ(m+n)

• If each inserted statement for specialized
application runs in constant time

• The same with directed graph DFS

• Extra space Θ(n)

• For array color, or activation frames of
recursion

Biconnected Graph
• Being connected

• Tree: acyclic, least (cost) connected

• Node/edge connected: fault-tolerant connection

• Articulation point (2-node connected)

• v is an articulation point if deleting v leads to
disconnection

• Bridge (2-edge connected)

• uv is a bridge if deleting uv leads to disconnection

Articulation Points

Definition Transformation
• “Short definition”

• Deleting v leads to disconnection

• “Long definition”

• If there exist nodes w and x, such that v is in every path
from w to x (w and x are vertices different from v)

• “Long definition” or “DFS definition”

• No back edges linking any vertex in some w-rooted
subtree and any ancestor of v

Articulation Point Algorithm

Updating the value of back
• v first discovered

• back=discoverTime(v)

• Trying to explore, but a back edge vw from v
encountered

• back=min(back, discoverTime(w))

• Backtracking from w to v

• back=min(back, wback)

The back value of v is
the smallest discover
time a back edge “sees”
from any subtree of v.

Example

Example

Example

Keeping the Track

of Backing

• Tracking data

• For each vertex v, a local variable back is used to
store the required information, as the value of
discoverTime of some vertex.

• Testing for bicomponent

• At backtracking from w to v, the condition implying a
bicomponent is:

• wBack ≥ discoverTime(v)

When back is no less than
the discover time of v, there
is at least one subtree of v
connected to other part of
the graph only by v.

(where wback is the returned
back value for w)

Example

Articulation Point Algorithm

Correctness
• We have seen that:

• If v is the articulation point farthest away from the
root on the branch, then one bicomponent is
detected.

• So, we need only prove that:

• In a DFS tree, a vertex (not root) v is an articulation
point if and only if (1) v is not a leaf; (2) some
subtree of v has no back edge incident with a
proper ancestor of v.

Characteristics of
Articulation Point

• In a DFS tree, a vertex (not root) v is an articulation point if
and only if (1) v is not a leaf; (2) some subtree of v has no back
edge incident with a proper ancestor of v.

• <= Trivial

• =>

• By definition, v is on every path between some x, y (different
from v).

• At least one of x, y is a proper descendent of v (otherwise, x<-
>root<->y not containing v).

• By contradiction, suppose that every subtree of v has a back
edge to a proper ancestor of v, we can find a xy-path not
containing v for all possible cases (only 2 cases)

Case 1

Case 2

What about the root?
• One single DFS tree

• We only consider each connected component

• Root AP ≡Two or more sub-trees

• The root is an articulation point

Defining the Bridge
• Short definition

• Removing uv leading to
disconnection

• Long definition

• Edge uv is a bridge iff node u
and v are connected only by
uv

• DFS Definition

• Edge uv is a tree edge in DFS

• Three is no subtree rooted at
v to any proper ancestor of v
(including u)

Bridge Algorithm

Other Traversal Problems
• Orientation of an undirected graph

• Give each edge a direction

• Satisfying pre-specified constraints

• E.g., the “in-degree of each vertex is at least 1”

• Possible or not?

• If possible, how to?

• As for “in-degree ≥ 1”

• Orientation possible iff. the graph has at least a circle

• Find the end point of some back edge

• A second DFS from this end point

Other Traversal Problems

• Get MST in O(m+n) time

• Given that edges weights are only 1 and 2

• Graph traversal is sufficient

• DFS over “weight 1 edges” only

• DFS over “weight 2 edges” only

MST: Minimum Spanning Tree

Thank you!

Q & A

