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In the last class …
• Directed Acyclic Graph 

• Topological order


• Critical path analysis


• Strongly Connected Component (SCC) 

• Strong connected component and condensation


• Finding SCC based on DFS



DFS on Undirected Graph
• Undirected Graph 

• Symmetric Digraph


• Undirected Graph DFS Skeleton


• Biconnected Components 

• Articulation Points


• Bridge


• Other undirected graph problems 

• Orientation of an undirected graph


• Simplified Minimum Spanning Tree



What is Different for 
“Undirected”

• Characteristics of undirected graph traversal 

• One edge may be traversed for two times in 
opposite directions.


• For an undirected graph, DFS provides an 
orientation for each of its edges 

• Oriented in the direction in which they are first 
encountered.



Edges in DFS



Modifications to

the DFS Skeleton

• All the second encounter are bypassed. 

• So, the only substantial modification is for the 
possible back edges leading to an ancestor, 
but not direct parent. 

• We need know the parent, that is, the direct 
ancestor, for the vertex to be processed.



DFS Skeleton for 
Undirected Graph

• void dfsSweep(intList[] adjVertices, int n, …) 

•     int ans; 

•     <Allocate color array and initialize to white> 

•     for each vertex v of G, in some order 

•         if(color[v]==white) 

•             Int vAns=dfs(adjVertices, color, v, -1,…); 

•             <Process vAns> 

•         //continue loop 

•     return ans;



DFS Skeleton for 
Undirected Graph

• int dfs(intList[] adjVertices, int[] color, int v, int p,…) 
•     int w; intList remAdj; int ans; color[v]=gray; 
•     <Preorder processing of vertex v> 
•     remAdj=adjVertices[v]; 
•     while(remAdj != nil) 
•         w=first(remAdj); 
•         if(color[w]==white) 
•             <Exploratory processing for tree edge vw> 
•             dfs(adjVertices, color, w, v, …); 
•             <Backtrack processing for tree edge vw, using wAns> 
•         else if(color[w]==gray && w!=p) 
•             <Checking for nontree edge vw> 
•        remAdj=rest(remAdj); 
•     <Postorder processing of vertex v, including final computation of ans> 
•     color[v]=black; 
•     return ans;



Complexity of

Undirected DFS

•Θ(m+n) 

• If each inserted statement for specialized 
application runs in constant time


• The same with directed graph DFS


• Extra space Θ(n) 

• For array color, or activation frames of 
recursion



Biconnected Graph
• Being connected 

• Tree: acyclic, least (cost) connected


• Node/edge connected: fault-tolerant connection


• Articulation point (2-node connected) 

• v is an articulation point if deleting v leads to 
disconnection


• Bridge (2-edge connected) 

• uv is a bridge if deleting uv leads to disconnection



Articulation Points



Definition Transformation
• “Short definition” 

• Deleting v leads to disconnection


• “Long definition” 

• If there exist nodes w and x, such that v is in every path 
from w to x (w and x are vertices different from v)


• “Long definition” or “DFS definition” 

• No back edges linking any vertex in some w-rooted 
subtree and any ancestor of v



Articulation Point Algorithm



Updating the value of back
• v first discovered 

• back=discoverTime(v)


• Trying to explore, but a back edge vw from v 
encountered 

• back=min(back, discoverTime(w))


• Backtracking from w to v 

• back=min(back, wback)

The back value of v is 
the smallest discover 
time a back edge “sees” 
from any subtree of v.



Example



Example



Example



Keeping the Track 

of Backing

• Tracking data 

• For each vertex v, a local variable back is used to 
store the required information, as the value of 
discoverTime of some vertex.


• Testing for bicomponent 

• At backtracking from w to v, the condition implying a 
bicomponent is:


• wBack ≥ discoverTime(v)

When back is no less than 
the discover time of v, there 
is at least one subtree of v 
connected to other part of 
the graph only by v.

(where wback is the returned 
back value for w)



Example



Articulation Point Algorithm



Correctness
• We have seen that: 

• If v is the articulation point farthest away from the 
root on the branch, then one bicomponent is 
detected.


• So, we need only prove that: 

• In a DFS tree, a vertex (not root) v is an articulation 
point if and only if (1) v is not a leaf; (2) some 
subtree of v has no back edge incident with a 
proper ancestor of v.



Characteristics of 
Articulation Point

• In a DFS tree, a vertex (not root) v is an articulation point if 
and only if (1) v is not a leaf; (2) some subtree of v has no back 
edge incident with a proper ancestor of v. 

• <= Trivial 

• => 

• By definition, v is on every path between some x, y (different 
from v).


• At least one of x, y is a proper descendent of v (otherwise, x<-
>root<->y not containing v).


• By contradiction, suppose that every subtree of v has a back 
edge to a proper ancestor of v, we can find a xy-path not 
containing v for all possible cases (only 2 cases)



Case 1



Case 2



What about the root?
• One single DFS tree 

• We only consider each connected component


• Root AP ≡Two or more sub-trees 

• The root is an articulation point



Defining the Bridge
• Short definition 

• Removing uv leading to 
disconnection


• Long definition 

• Edge uv is a bridge iff node u 
and v are connected only by 
uv


• DFS Definition 

• Edge uv is a tree edge in DFS


• Three is no subtree rooted at 
v to any proper ancestor of v 
(including u)



Bridge Algorithm



Other Traversal Problems
• Orientation of an undirected graph 

• Give each edge a direction


• Satisfying pre-specified constraints

• E.g., the “in-degree of each vertex is at least 1”


• Possible or not? 

• If possible, how to?


• As for “in-degree ≥ 1” 

• Orientation possible iff. the graph has at least a circle

• Find the end point of some back edge


• A second DFS from this end point



Other Traversal Problems

• Get MST in O(m+n) time 

• Given that edges weights are only 1 and 2


• Graph traversal is sufficient 

• DFS over “weight 1 edges” only


• DFS over “weight 2 edges” only

MST: Minimum Spanning Tree



Thank you!

Q & A


