
Introduction to

Algorithm Design and Analysis

[04] QuickSort

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the Last Class …
• Recursion in algorithm design

• The divide and conquer strategy

• Proving the correctness of recursive procedures

• Solving recurrence equations

• Some elementary techniques

• Master theorem

QuickSort
• The sorting problem

• InsertionSort

• Analysis of InsertionSort

• QuickSort

• Analysis of QuickSort

The Sorting Problem
• Sorting

• E.g., sort all the students according to their GPA

• Assumptions for analysis of sorting

• What to sort?

• Problem size n: elements a1,a2,…,an with no identical keys

• In which order to sort?

• Sort in increasing order

• What are the inputs likely to be?

• Each possible input appears with the same probability

Comparison-based Sorting
• Sorting a number of keys

• The class of “algorithms that sort by comparison of keys”

• Critical operation

• Comparison between two keys

• No other operations are allowed for sorting

• Amount of work done

• The number of critical operations (key comparisons)

As Simple as Inserting

Initial Status

Ongoing

Final Status

…………….

…………….

Sorted Unsorted

The “vacancy”, to be shifted leftward,
by comparisons

Sorted Unsorted
(empty)

Shifting Vacancy
• int shiftVac(element[] E, int vacant, key x)

• Precondition: vacant is nonnegative

• Postconditions: Let xLoc be the value returned to the
caller, then:

• Elements in E at indexes less than xLoc are in their
original positions and have keys less than or equal to x.

• Elements in E at positions (xLoc+1, …, vacant) are
greater than x and were shifted up by one position from
their positions when shiftVac was invoked.

Shifting Vacancy: Recursion
int shiftVacRec(Element[] E, int vacant, key x)
 int xLoc;

1. if(vacant == 0)

2. xLoc = vacant;

3. else if (E[vacant - 1].key ≤ x)

4. xLoc = vacant;

5. else

6. E[vacant] = E[vacant - 1];

7. xLoc = shiftVacRec(E, vacant - 1, x);

8. return xLoc;

The recursive call is working on a
smaller range, so terminating;

The second argument is non-
negative, so precondition holding

Worse case frame stack size is O(n)

Shifting Vacancy: Iteration
int shiftVac(Element[] E, int xindex, key x)
 int vacant, xLoc;

 vacant = xindex;

 xLoc = 0; //Assume failure

 while(vacant > 0)

 if(E[vacant - 1].key ≤ x)

 xLoc = vacant; //Succeed

 break;

 E[vacant] = E[vacant - 1];

 vacant -= 1; //Keep looking

 return xLoc;

InsertionSort: the Algorithm
• Input: E(array), n ≥ 0(size of E)

• Output: E, ordered non-decreasingly by keys

• Procedure:
void InsertionSort(Element[] E, int n)
 int xindex;

 for(xindex = 1; xindex < n; xindex ++){

 element current = E[xindex];

 Key x = current.key;

 int xLoc = shiftVac(E, xindex, x);

 E[xLoc] = current;

 return;

Worst-Case Analysis

• At the beginning, there are n-1 entries in the
unsorted segment, so:

…………….

To find the right position for x in the
sorted segment, i comparisons must be
done in the worst case.

Sorted (i entries)

……

W(n) ≤
n−1

∑
i=1

i =
n(n − 1)

2

The input for which the upper
bound is reached does exist, so:

W(n) = Θ(n2)

Average-Case Behavior

• Assumptions:

• All permutations of the keys are equally likely as input.

• There are not different entries with the same keys.

…………….

x may be located in any one of the i+1
intervals (inclusive), assuming with the
same probability

Sorted (i entries)

……

Note: For the i-th and (i+1)-th intervals (leftmost), only one comparisons
is needed.

Average Complexity
• The expected number of comparisons in

shiftVac to find the location for the (i+1)-th
element:

• For all n-1 insertions:

1
i + 1

i

∑
j=1

j +
1

i + 1
(i) =

i
2

+
i

i + 1
=

i
2

+ 1 −
1

i + 1

A(n) =
n−1

∑
i=1

(i
2

+ 1 −
1

i + 1) =
n(n − 1)

4
+ n − 1 −

n

∑
j=2

1
i

=
n(n − 1)

4
+ n −

n

∑
j=1

1
j

=
n2

4
+

3n
4

− ln n ∈ Θ(n2)

Inversion and Sorting
• An unsorted sequence E:

• {x1, x2, x3,…, xn-1, xn} = {1, 2, 3,…,n-1, n}

• <xi, xj> is an inversion if xi > xj, but i < j

• Sorting ≡ Eliminating inversions

• All the inversions must be eliminated during
the process of sorting

Eliminating Inverses:

Worst Case

• Local comparison is done between two adjacent
elements

• At most one inversion is removed by a local
comparison

• There do exist inputs with n(n-1)/2 inversions, such
as (n, n-1, …, 3, 2, 1)

• The worst-case behavior of any sorting algorithm
that remove at most one inversion per key
comparison must in Ω(n2)

Eliminating Inversions:

Average Case

• Computing the average number of inversions in inputs of size
n (n > 1):

• Transpose: x1, x2, x3,…, xn-1, xn => xn ,xn-1, …x3, x2, x1

• For any i, j, (1≤j≤i≤n), the inversion (xi, xj) is in exactly one
sequence in a transpose pair.

• The number of inversions (xi, xj) on n distinct integers is
n(n-1)/2.

• So, the average number of inversions in all possible inputs is
n(n-1)/4, since exactly n(n-1)/2 inversions appear in each
transpose pair.

• The average behavior of any sorting algorithm that remove at
most one inversion per key comparison must in Ω(n2).

QuickSort: the Strategy
• Divide the array to be sorted into two parts: “small”

and “large”, which will be sorted recursively.

…………….……

[first] [last]
[splitPoint]: pivot

small large
for any element in this
segment, the key is less
than pivot.

for any element in this
segment, the key is not
less than pivot.

To be sorted recursively

QuickSort: the Strategy
• Divide

• “small” and “large”

• Conquer

• Sort “small” and “large” recursively

• Combine

• Easily combine sorted sub-array

…………….……
[first] [last]

[splitPoint]: pivot

small large

Hard divide,

easy combination

QuickSort: the Algorithm
• Input: Array E, indexes first, and last, such that elements E[i]

are defined for first≤i≤last.

• Output: E[first], …, E[last] is a sorted rearrangement of the
same elements.

• The procedure:
void quickSort(Element[] E, int first, int last)

 if(first < last)

 Element pivotElement = E[first];

 Key pivot = pivotElement.key;

 int splitPoint = partition(E, pivot, first, last);

 E[splitPoint] = pivotElement;

 quickSort(E, first, splitPoint - 1);

 quickSort(E, splitPoint - 1, last);

 return;

The splitting point is
chosen arbitrarily, as

the first element in the
array segment here.

Partition: the Strategy
…………….

Expanding Directions

“Small” segment Unexamined segment “Large” segment

Partition: the Process
• Always keep a vacancy before completion

…………….

…………….

highVac

Vacancy at the beginning, the key as pivot

Moving as far as possible!

…………….

lowVac

Vacant left after moving

First met key that is lees than pivot

First met key that is lees than pivot

Partition: the Algorithm
• Input: Array E, pivot, the key around which to partition, and

indexes first, and last, such that elements E[i] are defined for
first+1≤i≤last and E[first] is vacant. It is assumed that first<last.

• Output: Returning splitPoint, the elements originally in first+1,
…, last are rearranged into two subranges, such that

• the keys of E[first], …, E[splitPoint - 1] are less than pivot, and

• the keys of E[splitPoint + 1], …, E[last] are not less than pivot,
and

• first≤splitPoint≤last, and E[splitPoint] is vacant.

Partition: the Procedure
int partition(Element[] E, Key pivot, int first, int last)
 int low, high;

1. low = first; high = last;

2. while(low < high){

3. int highVac =

4. extendLargeRegion(E, pivot, low, high);

5. int lowVac =

6. extendSmallRegion(E, pivot, low + 1, highVac);

7. low = lowVac; high = highVac - 1;

8. }

9. return low; // this is the splitPoint

highVac has been filled now

Extending Regions
• Specification for

• Precondition:

• lowVac < high

• Postcondition:

• if there are elements in E[lowVac + 1], …, E[high] whose
key is less than pivot, then the rightmost of them is
moved to E[lowVac], and its original index is returned.

• If there is no such element, lowVac is returned;

extendLargeRegion(Element[] E, Key pivot, int lowVac, int high)

An Example
45 14 62 51 75 96 33 84 20

20 14 62 51 75 96 33 84 20

20 14 62 51 75 96 33 84 62

20 14 62 51 75 96 33 84 62

20 14 33 51 75 96 33 84 62

20 14 33 51 75 96 51 84 20

45 as pivot

high

highVac

low

lowVac

low

highVac

highVac

lowVac

high = highVac - 1

To be processed
in the next loop

Worst Case: a Paradox
• For a range of k positions, k-1 keys are compared

with the pivot (one is vacant).

• If the pivot is the smallest, then the “large”
segment has all the remaining k-1 elements, and
the “small” segment is empty.

• If the elements in the array to be sorted has
already in ascending order (the Goal), then the
number of comparison that Partition has to do is:

n

∑
k=2

(k − 1) =
n(n − 1)

2
∈ O(n2)

Average-case Analysis
• Assumption: all permutation of the keys are equally

likely.

• A(n) is the average number of key comparisons done
for range of size n.

• In the first cycle of Partition, n-1 comparisons are
done.

• If split point is E[i] (each i has probability 1/n),
Partition is to be executed recursively on the
subrange [0, …, i-1] and [i+1, …, n-1]

The Recurrence Equation

…………….……

E[0] E[n-1]
[splitPoint]: E[i]

subrange 1: size = i subrange 2: size = n-1-i

with i∈{0, 1, 2,…, n-1}, each value with the probability 1/n

the average number of key comparison A(n) is:

A(n) = (n − 1) +
n−1

∑
i=0

1
n

[A(i) + A(n − 1 − i)] for n ≥ 2

A(1)=A(0)=0 The number of key comparison in the
first cycle (finding the splitPoint) is n-1

why the
assumed

probability
still holds
for each

subrange?

Simplified Recurrence
Equation

• Note:

• So:

• Two approaches to solve the equation

• Guess, and prove by induction

• Solve directly

n−1

∑
i=0

A(i) =
n−1

∑
i=0

A[(n − 1) − i] A(0) = 0

A(n) = (n − 1) +
2
n

n−1

∑
i=1

A(i) for n ≥ 1

Guess the Solution
• A special case as the clue for a smart guess

• Assuming that Partition divide the problem
range into 2 subranges of about the same
size.

• So, the number of comparison Q(n) satisfy:

• Applying Master Theorem, cases:
Q(n) ≈ n + 2Q(n/2)

Q(n) ∈ Θ(n log n)

Note: here, b=c=2, so E=log(b)/log(c)=1, and, f(n)=nE=n

Inductive Proof:

A(n)∈O(nlnn)

• Theorem: A(n)≤cnlnn for some constant c, with A(n) defined by the
recurrence equation above.

• Proof:

• By induction on n, the number of elements to be sorted. Base case
(n=1) is trivial.

• Inductive assumption: for 1≤i<n

A(n) = (n − 1) +
2
n

n−1

∑
i=1

A(i) ≤ (n − 1) +
2
n

n−1

∑
i=1

ci ln i

2
n

n−1

∑
i=1

ci ln i ≤
2c
n ∫

n

1
x ln xdx ≈

2c
n (n2 ln n

2
−

n2

4) = cn ln n −
cn
2

A(n) ≤ cn ln n + n(1 −
c
2) − 1

Note:

So,

Let c = 2, we have A(n) ≤ 2n ln n

A(i) ≤ ci ln i

For Your Reference
∫

n

1
xk ln xdx = (xk+1 ln x

k + 1
−

xk+1

(k + 1)2)
n

1

=
nk+1 ln n

k + 1
−

nk+1

(k + 1)2
+

1
(k + 1)2

∫
b

a−1
f(x)dx ≤

b

∑
i=a

f(i) ≤ ∫
b+1

a
f(x)dx

a b

n

∑
i=1

1
i

≈ ln n + 0.577

Harmonic Series

Inductive Proof:

A(n)∈Ω(nlnn)

• Theorem: A(n)≥cnlnn for some constant c, with large n

• Inductive reasoning:

A(n) = (n − 1) +
2
n

n−1

∑
i=1

A(i) ≥ (n − 1) +
2
n

n−1

∑
i=1

ci ln i

= (n − 1) +
2c
n

n

∑
i=2

i ln i − 2c ln n ≥ (n − 1) +
2c
n ∫

n

1
x ln xdx − 2c ln n

≈ cn ln n + [(n − 1) − c(
n
2

+ 2 ln n)]

c <
n − 1

n
2 + 2 ln n

A(n) > cn ln n lim
n→∞

n − 1
n
2 + 2 ln n

= 2Let , then (Note:)

Directly Derived

Recurrence Equation

nA(n) − (n − 1)A(n − 1)

A(n) = (n − 1) +
2
n

n−1

∑
i=1

A(i)

A(n − 1) = (n − 2) +
2

n − 1

n−2

∑
i=1

A(i)

We have and

Combining the 2 equations in some way, we can remove all
A(i) for i=1, 2, …, n-2

nA(n) = (n + 1)A(n − 1) + 2(n − 1)

= n(n − 1) + 2
n−1

∑
i=1

A(i) − (n − 1)(n − 2) − 2
n−2

∑
i=1

A(i)

= 2A(n − 1) + 2(n − 1)

So,

Solve the Equation

• We have:

• Thus:

• Finally we get

•

nA(n) = (n + 1)A(n − 1) + 2(n − 1)
A(n)
n + 1

=
A(n − 1)

n
+

2(n − 1)
n(n + 1)

B(n) = B(n − 1) +
2(n − 1)
n(n + 1)

B(n) = O(log n)

B(1) = 0

A(n) = O(n log n)

Space Complexity
• Good news:

• Partition is in-place

• Bad news:

• In the worst case, the depth of recursion will
be n-1

• So, the largest size of the recursion stack will
be in Θ(n)

More than Sorting
• QuickSort Partition

• O(n)

• Bolts and nuts

• O(nlogn)

• k-Sorted

• O(nlogk)

Thank you!

Q & A

