Introduction to

Algorithm Design and Analysis

[04] QuickSort

Jingwei Xu https://ics.nju.edu.cn/~xjw/ Institute of Computer Software Nanjing University

In the Last Class ...

- Recursion in algorithm design
 - The divide and conquer strategy
 - Proving the correctness of recursive procedures
- Solving recurrence equations
 - Some elementary techniques
 - Master theorem

QuickSort

• The sorting problem

- InsertionSort
- Analysis of InsertionSort

- QuickSort
- Analysis of QuickSort

The Sorting Problem

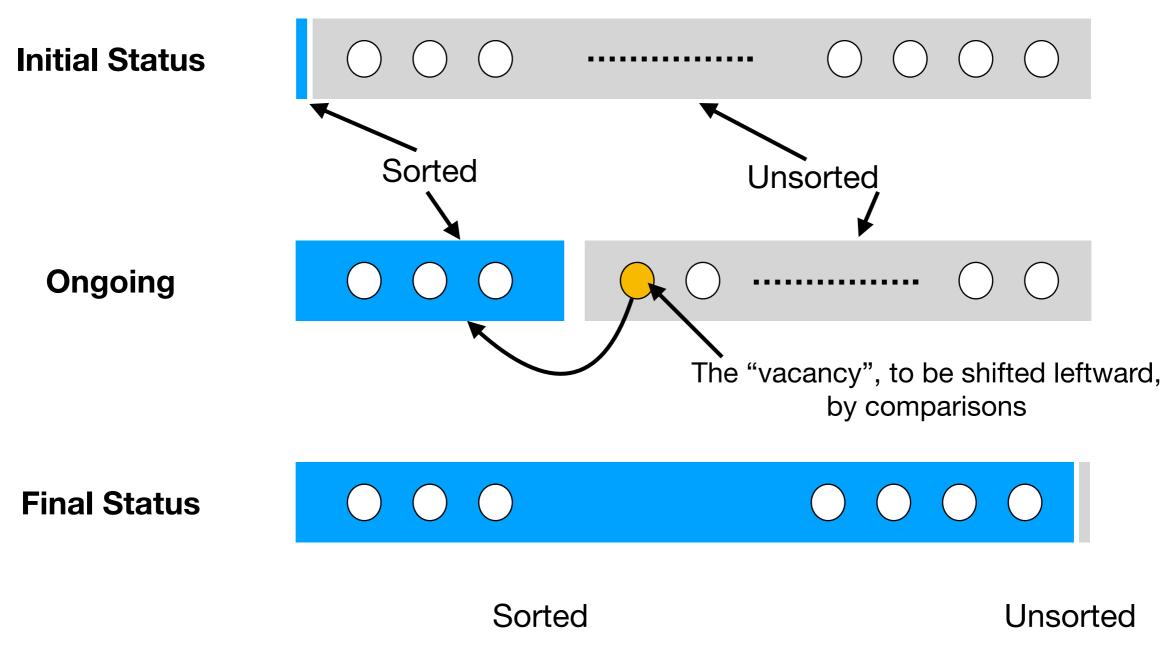
Sorting

- E.g., sort all the students according to their GPA
- Assumptions for analysis of sorting
 - What to sort?
 - Problem size n: elements a1,a2,...,an with no identical keys
 - In which order to sort?
 - Sort in increasing order
 - What are the inputs likely to be?
 - Each possible input appears with the same probability

Comparison-based Sorting

- Sorting a number of keys
 - The class of "algorithms that sort by comparison of keys"
- Critical operation
 - Comparison between two keys
 - No other operations are allowed for sorting
- Amount of work done
 - The number of critical operations (key comparisons)

As Simple as Inserting



(empty)

Shifting Vacancy

- int shiftVac(element[] E, int vacant, key x)
- Precondition: vacant is nonnegative
- Postconditions: Let xLoc be the value returned to the caller, then:
 - Elements in E at indexes less than xLoc are in their original positions and have keys less than or equal to x.
 - Elements in E at positions (xLoc+1, ..., vacant) are greater than x and were shifted up by one position from their positions when shiftVac was invoked.

Shifting Vacancy: Recursion

int shiftVacRec(Element[] E, int vacant, key x)

int xLoc;

- 1. if (vacant == 0)
- 2. xLoc = vacant;
- 3. else if (E[vacant 1].key \leq x)
- 4. xLoc = vacant;

5. else

6. E[vacant] = E[vacant - 1];

xLoc = shiftVacRec(E, vacant - 1, x);

8. return xLoc;

Shifting Vacancy: Iteration

int shiftVac(Element[] E, int xindex, key x)

- int vacant, xLoc;
- vacant = xindex;
- xLoc = 0; //Assume failure
- while(vacant > 0)
 - if(E[vacant 1].key \leq x)
 - xLoc = vacant; //Succeed

break;

- E[vacant] = E[vacant 1];
- vacant -= 1; //Keep looking

return xLoc;

InsertionSort: the Algorithm

- Input: E(array), $n \ge 0$ (size of E)
- Output: E, ordered non-decreasingly by keys

• Procedure:

void InsertionSort(Element[] E, int n)

int xindex;

for(xindex = 1; xindex < n; xindex ++){</pre>

element current = E[xindex];

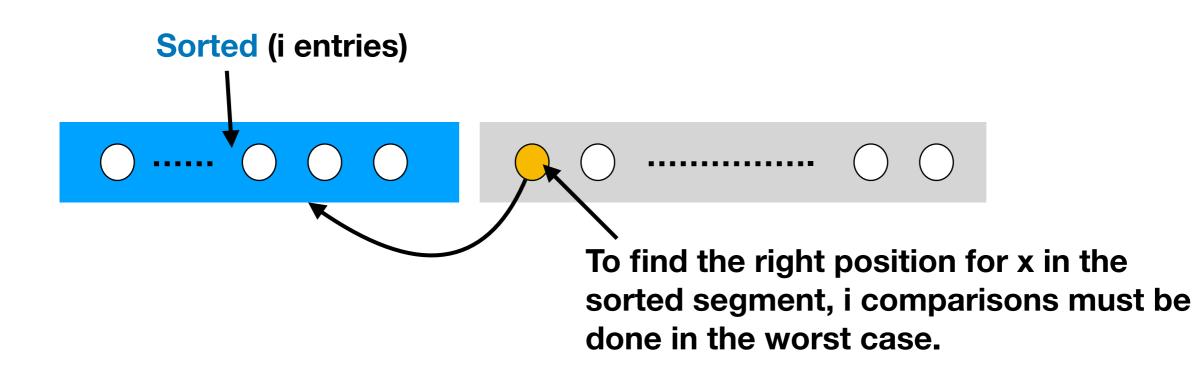
Key x = current.key;

int xLoc = shiftVac(E, xindex, x);

E[xLoc] = current;

return;

Worst-Case Analysis



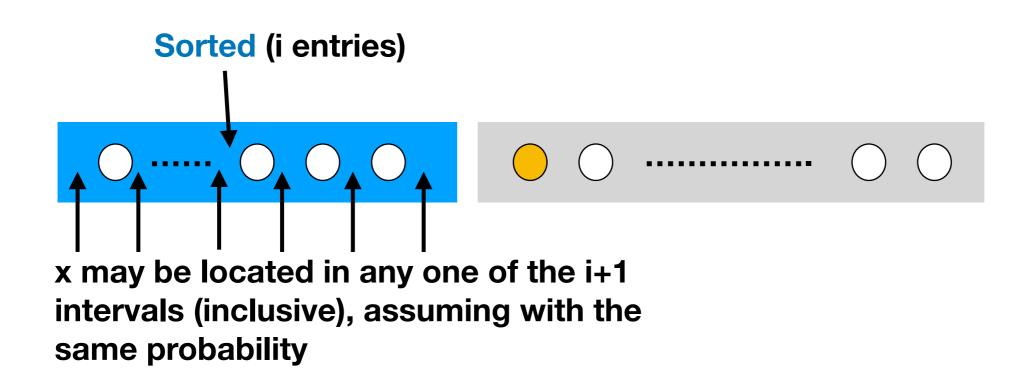
 At the beginning, there are n-1 entries in the unsorted segment, so:

$$W(n) \le \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

The input for which the upper bound is reached does exist, so:

 $W(n) = \Theta(n^2)$

Average-Case Behavior



• Assumptions:

- All permutations of the keys are equally likely as input.
- There are not different entries with the same keys.

Note: For the i-th and (i+1)-th intervals (leftmost), only one comparisons is needed.

Average Complexity

 The expected number of comparisons in shiftVac to find the location for the (i+1)-th element:

$$\frac{1}{i+1}\sum_{j=1}^{i}j + \frac{1}{i+1}(i) = \frac{i}{2} + \frac{i}{i+1} = \frac{i}{2} + 1 - \frac{1}{i+1}$$

• For all n-1 insertions:

$$A(n) = \sum_{i=1}^{n-1} \left(\frac{i}{2} + 1 - \frac{1}{i+1} \right) = \frac{n(n-1)}{4} + n - 1 - \sum_{j=2}^{n} \frac{1}{i}$$
$$= \frac{n(n-1)}{4} + n - \sum_{j=1}^{n} \frac{1}{j} = \frac{n^2}{4} + \frac{3n}{4} - \ln n \in \Theta(n^2)$$

Inversion and Sorting

- An unsorted sequence E:
 - { $x_1, x_2, x_3, ..., x_{n-1}, x_n$ } = {1, 2, 3,...,n-1, n}
- $< x_i, x_j > is an inversion if x_i > x_j, but i < j$
- Sorting = Eliminating inversions
 - All the inversions must be eliminated during the process of sorting

Eliminating Inverses: Worst Case

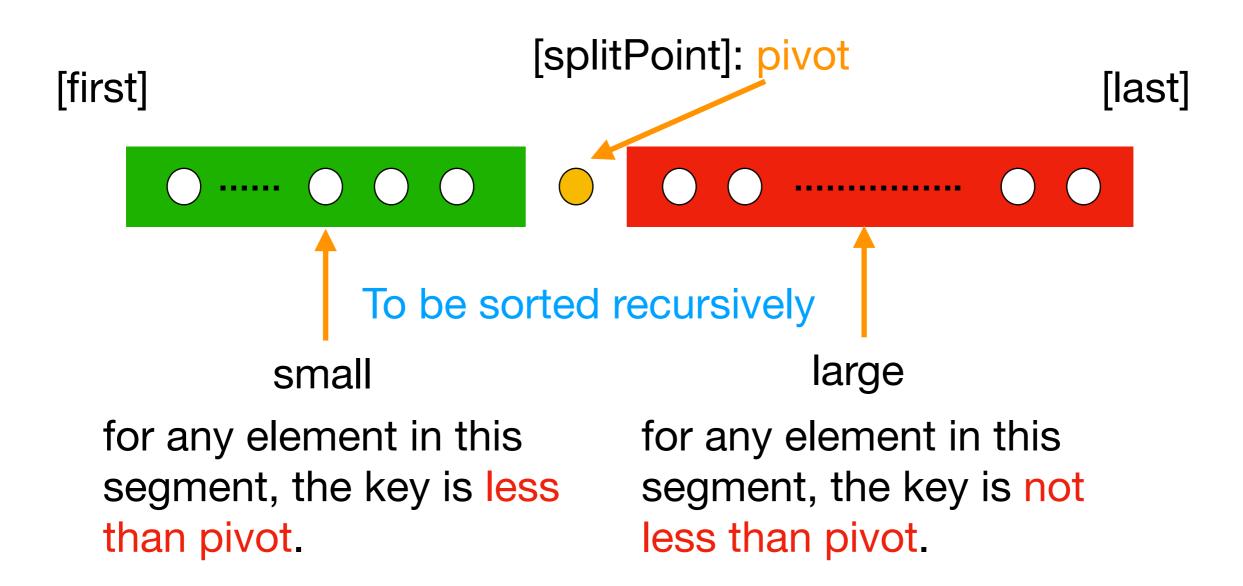
- Local comparison is done between two adjacent elements
- At most one inversion is removed by a local comparison
- There do exist inputs with n(n-1)/2 inversions, such as (n, n-1, ..., 3, 2, 1)
- The worst-case behavior of any sorting algorithm that remove at most one inversion per key comparison must in Ω(n²)

Eliminating Inversions: Average Case

- Computing the average number of inversions in inputs of size n (n > 1):
 - Transpose: $x_1, x_2, x_3, ..., x_{n-1}, x_n \implies x_n, x_{n-1}, ..., x_3, x_2, x_1$
 - For any i, j, (1≤j≤i≤n), the inversion (x_i, x_j) is in exactly one sequence in a transpose pair.
 - The number of inversions (x_i, x_j) on n distinct integers is n(n-1)/2.
 - So, the average number of inversions in all possible inputs is n(n-1)/4, since exactly n(n-1)/2 inversions appear in each transpose pair.
- The average behavior of any sorting algorithm that remove at most one inversion per key comparison must in $\Omega(n^2)$.

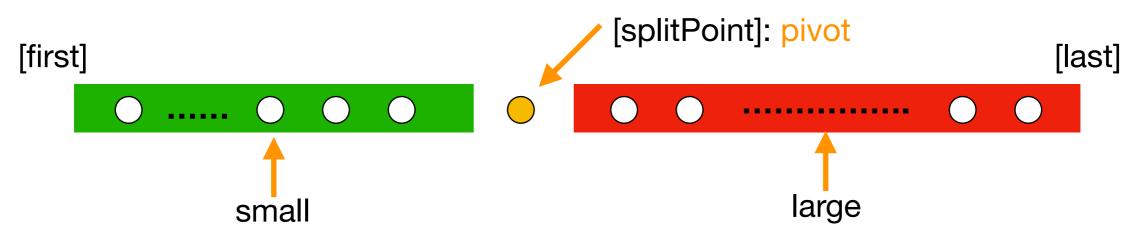
QuickSort: the Strategy

 Divide the array to be sorted into two parts: "small" and "large", which will be sorted recursively.



QuickSort: the Strategy

- Divide
 - "small" and "large"
- Conquer
 - Sort "small" and "large" recursively
- Combine
 - Easily combine sorted sub-array



Hard divide, easy combination

QuickSort: the Algorithm

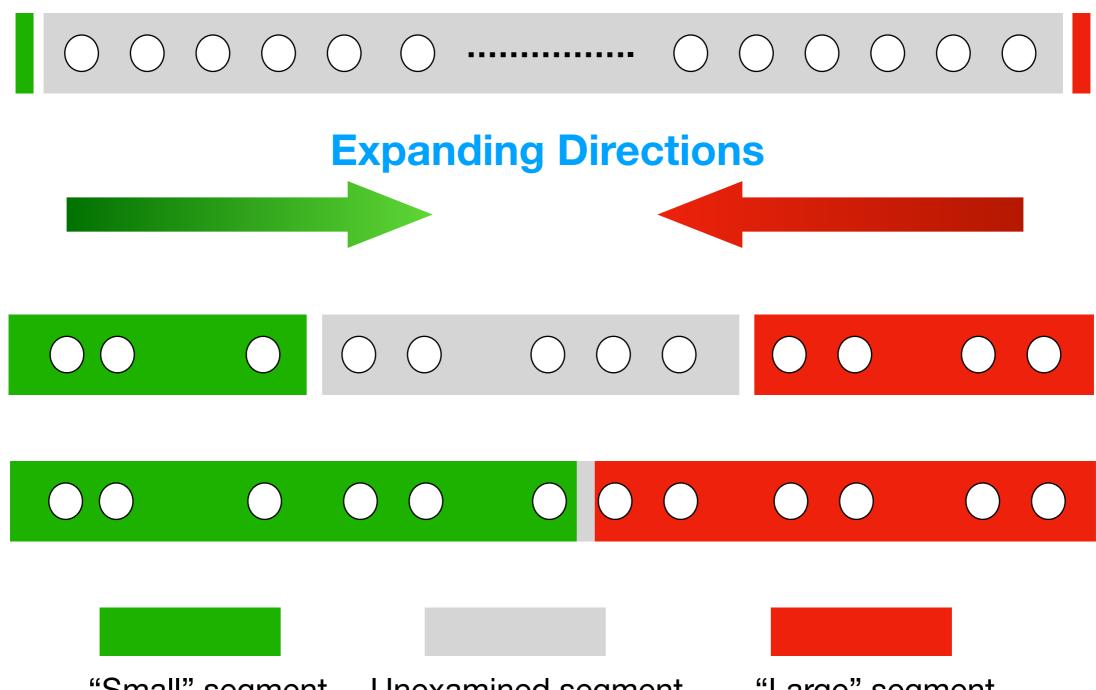
- Input: Array E, indexes first, and last, such that elements E[i] are defined for first≤i≤last.
- Output: E[first], ..., E[last] is a sorted rearrangement of the same elements.

• The procedure:

void quickSort(Element[] E, int first, int last)
if(first < last)
Element pivotElement = E[first];
Key pivot = pivotElement.key;
int splitPoint = partition(E, pivot, first, last);
E[splitPoint] = pivotElement;
quickSort(E, first, splitPoint - 1);
quickSort(E, splitPoint - 1, last);
return;</pre>

The splitting point is chosen arbitrarily, as the first element in the array segment here.

Partition: the Strategy

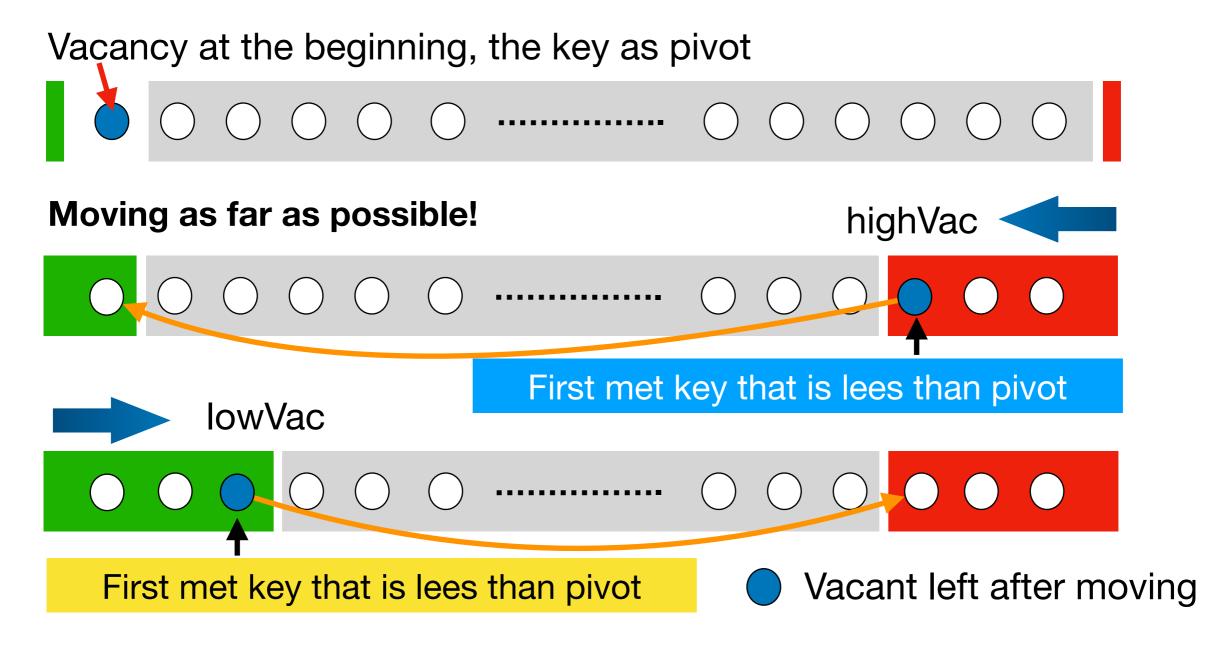


"Small" segment Unexamined segment

"Large" segment

Partition: the Process

Always keep a vacancy before completion



Partition: the Algorithm

- Input: Array E, pivot, the key around which to partition, and indexes first, and last, such that elements E[i] are defined for first+1≤i≤last and E[first] is vacant. It is assumed that first<last.
- Output: Returning splitPoint, the elements originally in first+1, ..., last are rearranged into two subranges, such that
 - the keys of E[first], ..., E[splitPoint 1] are less than pivot, and
 - the keys of E[splitPoint + 1], ..., E[last] are not less than pivot, and
 - first≤splitPoint≤last, and E[splitPoint] is vacant.

Partition: the Procedure

int partition(Element[] E, Key pivot, int first, int last)

int low, high;

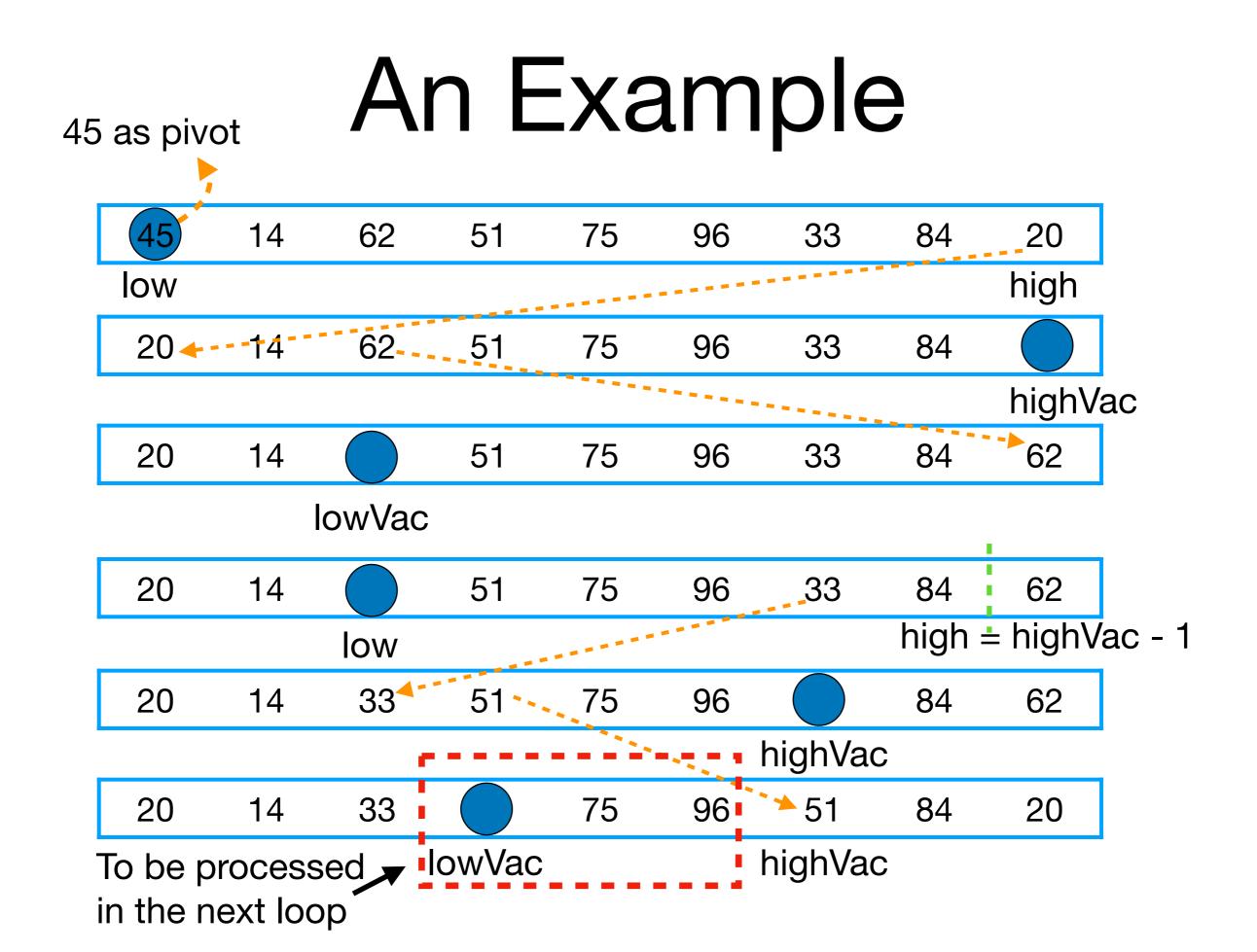
- 1. low = first; high = last;
- 2. while(low < high){
- 3. int highVac =
- 4. **extendLargeRegion**(E, pivot, low, high);
- 5. int lowVac =
- 6. **extendSmallRegion**(E, pivot, low + 1, highVac);
- 7. low = lowVac; high = highVac 1;
- 8. }
- 9. return low; // this is the splitPoint

Extending Regions

Specification for

extendLargeRegion(Element[] E, Key pivot, int lowVac, int high)

- Precondition:
 - lowVac < high
- Postcondition:
 - if there are elements in E[lowVac + 1], ..., E[high] whose key is less than pivot, then the rightmost of them is moved to E[lowVac], and its original index is returned.
 - If there is no such element, lowVac is returned;



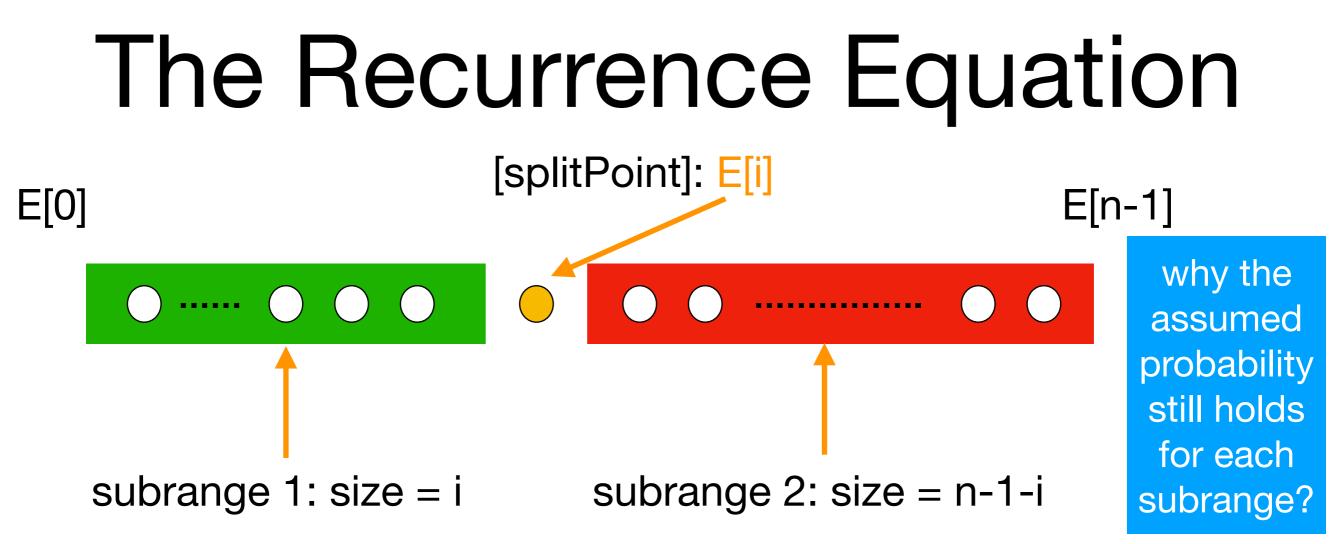
Worst Case: a Paradox

- For a range of k positions, k-1 keys are compared with the pivot (one is vacant).
 - If the pivot is the smallest, then the "large" segment has all the remaining k-1 elements, and the "small" segment is empty.
 - If the elements in the array to be sorted has already in ascending order (the Goal), then the number of comparison that Partition has to do is:

$$\sum_{k=2}^{n} (k-1) = \frac{n(n-1)}{2} \in O(n^2)$$

Average-case Analysis

- Assumption: all permutation of the keys are equally likely.
- A(n) is the average number of key comparisons done for range of size n.
 - In the first cycle of Partition, n-1 comparisons are done.
 - If split point is E[i] (each i has probability 1/n), Partition is to be executed recursively on the subrange [0, ..., i-1] and [i+1, ..., n-1]



with i \in {0, 1, 2,..., n-1}, each value with the probability 1/n

the average number of key comparison A(n) is:

$$A(n) = (n-1) + \sum_{i=0}^{n-1} \frac{1}{n} [A(i) + A(n-1-i)] \quad \text{for } n \ge 2$$

A(1)=A(0)=0

The number of key comparison in the first cycle (finding the splitPoint) is n-1

Simplified Recurrence Equation

• Note:
$$\sum_{i=0}^{n-1} A(i) = \sum_{i=0}^{n-1} A[(n-1) - i]$$
 $A(0) = 0$

• So:
$$A(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} A(i)$$
 for $n \ge 1$

- Two approaches to solve the equation
 - Guess, and prove by induction
 - Solve directly

Guess the Solution

- A special case as the clue for a smart guess
 - Assuming that Partition divide the problem range into 2 subranges of about the same size.
 - So, the number of comparison Q(n) satisfy: $Q(n) \approx n + 2Q(n/2)$
 - Applying Master Theorem, cases: $Q(n) \in \Theta(n \log n)$

Note: here, b=c=2, so E=log(b)/log(c)=1, and, f(n)=n^E=n

Inductive Proof: $A(n) \in O(n \ln n)$

- Theorem: A(n)≤cnlnn for some constant c, with A(n) defined by the recurrence equation above.
- Proof:
 - By induction on n, the number of elements to be sorted. Base case (n=1) is trivial.
 - Inductive assumption: $A(i) \le ci \ln i$ for $1 \le i < n$

$$A(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} A(i) \le (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} ci \ln i$$

Note: $\frac{2}{n} \sum_{i=1}^{n-1} ci \ln i \le \frac{2c}{n} \int_{1}^{n} x \ln x dx \approx \frac{2c}{n} \left(\frac{n^2 \ln n}{2} - \frac{n^2}{4} \right) = cn \ln n - \frac{cn}{2}$
So, $A(n) \le cn \ln n + n \left(1 - \frac{c}{2} \right) - 1$

Let c = 2, we have $A(n) \le 2n \ln n$

For Your Reference

Inductive Proof: $A(n) \in \Omega(n \ln n)$

- Theorem: $A(n) \ge cn \ln n$ for some constant c, with large n
- Inductive reasoning:

$$A(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} A(i) \ge (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} ci \ln i$$
$$= (n-1) + \frac{2c}{n} \sum_{i=2}^{n} i \ln i - 2c \ln n \ge (n-1) + \frac{2c}{n} \int_{1}^{n} x \ln x dx - 2c \ln n$$

$$\approx cn \ln n + [(n-1) - c(\frac{n}{2} + 2\ln n)]$$

Let
$$c < \frac{n-1}{\frac{n}{2} + 2\ln n}$$
, then $A(n) > cn \ln n$ (Note: $\lim_{n \to \infty} \frac{n-1}{\frac{n}{2} + 2\ln n} = 2$)

Directly Derived Recurrence Equation

We have
$$A(n) = (n-1) + \frac{2}{n} \sum_{i=1}^{n-1} A(i)$$
 and
 $A(n-1) = (n-2) + \frac{2}{n-1} \sum_{i=1}^{n-2} A(i)$

Combining the 2 equations in some way, we can remove all A(i) for i=1, 2, ..., n-2

$$nA(n) - (n - 1)A(n - 1)$$

= $n(n - 1) + 2\sum_{i=1}^{n-1} A(i) - (n - 1)(n - 2) - 2\sum_{i=1}^{n-2} A(i)$
= $2A(n - 1) + 2(n - 1)$

So, nA(n) = (n + 1)A(n - 1) + 2(n - 1)

Solve the Equation

$$nA(n) = (n+1)A(n-1) + 2(n-1) \longrightarrow \frac{A(n)}{n+1} = \frac{A(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$$

• We have:
$$B(n) = B(n-1) + \frac{2(n-1)}{n(n+1)}$$
 $B(1) = 0$

- Thus: $B(n) = O(\log n)$
- Finally we get

•
$$A(n) = O(n \log n)$$

$$\begin{split} B(n) &= \sum_{i=1}^{n} \frac{2(i-1)}{i(i+1)} = 2\sum_{i=1}^{n} \frac{(i+1)-2}{i(i+1)} \\ &= 2\sum_{i=1}^{n} \frac{1}{i} - 4\sum_{i=1}^{n} \frac{1}{i(i+1)} = 4\sum_{i=1}^{n} \frac{1}{i+1} - 2\sum_{i=1}^{n} \frac{1}{i} \\ &= 4\sum_{i=2}^{n+1} \frac{1}{i} - 2\sum_{i=1}^{n} \frac{1}{i} = 2\sum_{i=1}^{n} \frac{1}{i} - \frac{4n}{n+1} \\ &= O(\log n) \end{split}$$

Space Complexity

• Good news:

- Partition is in-place
- Bad news:
 - In the worst case, the depth of recursion will be n-1
 - So, the largest size of the recursion stack will be in Θ(n)

More than Sorting

- QuickSort Partition
 - O(n)
- Bolts and nuts
 - O(nlogn)
- k-Sorted
 - O(nlogk)

Thank you! Q&A