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In the last class …
• The sorting problem 

• Assumptions


• InsertionSort 

• Design


• Analysis: inverse


• QuickSort 

• Design


• Analysis



HeapSort
• Heap 

• HeapSort 

• FixHeap 

• ConstructHeap 

• Complexity of HeapSort 

• Accelerated HeapSort
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Elementary

Priority Queue ADT

• “FIFO” in some special sense. The “first” means some kind of 
“priority”, such as value (largest or smallest) 
• PriorityQ create()


• Precondition: none

• Postconditions: If pq=create(), then, pq refers to a newly created object and 

isEmpty(pt)=true 
• boolean isEmpty(PriorityQ pq)


• precondition: none

• int getMax(PriorityQ pq)

• precondition: isEmpty(pq)=false

• postconditions: **


• void insert(PriorityQ pq, int id, float w)

• preconditions: none

• postconditions: isEmpty(pq)=false; **


• void delete(PriorityQ pq)

• precondition: isEmpty(pq)=false

• postconditions: value of isEmpty(pq) updated; **


• void increaseKey(PriorityQ pq, int id, float newKey)

**pq can always be 
thought as a sequence 
of pairs (idi, wi), in 
non-decreasing order 
of wi



Heap: an Implementation of 
Priority Queue

• A binary tree T is a heap structure if: 

• T is complete at least though depth h-1


• All leaves are at depth h or h-1


• All paths to a leaf of depth h are to the left of all paths 
to a leaf of depth h-1


• Partial order tree property 

• A tree T is a (maximizing) partial order tree if and only if 
the key at any node is greater than or equal to the 
keys at each of its children (if it has any).



Heap: Examples
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The maximal key is 
always with the root



Heap: an Implementation of 
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HeapSort: the Strategy
heapSort(E, n)

    Construct H from E, the set of n elements to be sorted;

    for (i = n; i ≥ 1; i -=1){

        curMax = getMax(H);

        deleteMax(H);

        E[i] = curMax;

    }

deleteMax(H)

    copy the rightmost element on the lowest level of H into K;

    Delete the rightmost element on the lowest level of H;

    fixHeap(H, K);



FixHeap
• Input: A nonempty binary tree H with a “vacant” root and its 

two subtrees in partial order. An element K to be inserted. 

• Output: H with K inserted and satisfying the partial order 
tree property. 

• Procedure:
fixheap(H, K)

    if(H is a leaf) insert K in root(H);

    else

        set largerSubHeap;

        if(K.key≥root(largerSubHeap).key) 

            insert K in root(H);           

        else

            insert root(largerSubHeap) in root(H);

            fixHeap(largerSubHeap, K);

    return;

One comparison:

largerSubHeap is left- or right- 
Subtree(H), the one with larger key at 
its root.

Special case: rightSubtree is empty.

“Vacant” moving down



FixHeap: an Example
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Worst Case Analysis for 
fixHeap

• 2 comparisons at most in one activation of the procedure 

• The tree height decreases by one in the recursive call 

• So, 2h comparisons are needed in the worst case, where h is the height of the tree 

• Procedure:
fixheap(H, K)

    if(H is a leaf) insert K in root(H);

    else

        set largerSubHeap;

        if(K.key≥root(largerSubHeap).key) 

            insert K in root(H);           

        else

            insert root(largerSubHeap) in root(H);

            fixHeap(largerSubHeap, K);

    return;

One comparison:

largerSubHeap is left- or right- 
Subtree(H), the one with larger key at 
its root.

Special case: rightSubtree is empty.

“Vacant” moving down

recursion



Heap Construction
• Note: if left subtree and right subtree both 

satisfy the partial order tree property, then 
fixHeap(H, root(H)) gets the thing done. 

• We begin from a Heap Structure H:

void constructHeap(H)

    if(H is not a leaf) 

        constructHeap(left subtree of H);

        constructHeap(right subtree of H);

        Element K = root(H);

        fixHeap(H, K);

    return;

root

Post-order Traversal

left right



Correctness of

constructHeap

• Specification 

• Input: A heap structure H, not necessarily 
having the partial order tree property.


• Output: H with the same nodes rearranged to 
satisfy the partial order tree property.

void constructHeap(H)

    if(H is not a leaf) 

        constructHeap(left subtree of H);

        constructHeap(right subtree of H);

        Element K = root(H);

        fixHeap(H, K);

    return;

H is a leaf: base case, satisfied trivially.

Preconditions hold respectively?

Postcondition of constructHeap satisfied?



Linear Time Heap

Construction!

• The recursion equation: 

• A special case: H is a complete binary tree: 

• The size N=2d-1,


• Note:


• The Master Theorem applies, with b=c=2, and the 
critical exponent E=1,


• Note:


• When 0<ε<1, this limit is equal to zero


• So,                                , case 1 satisfied, we have

W(n) = W(n − r − 1) + W(r) + 2 log n

W(N) = 2W((N − 1)/2) + 2 log N

f(N) = 2 log N

lim
N→∞

2 log N
N1−ϵ

= lim
N→∞

2 log N
N1−ϵ log 2

= lim
N→∞

2Nϵ

((1 − ϵ)log 2)N

2 log N ∈ O(NE−ϵ) W(n) ∈ Θ(N)

(then, for arbitrary n, N/2<n<N≤2n, so W(n)≤W(N)≤W(2n))



Direct Analysis of Heap

construction

• Heap construction 

• From recursion to iteration


• Sum of row sums

cost =
⌊log n⌋

∑
h=0

n
O(h)
2h+1

= O(n)

c = logn fix; h = logn; # = 1
c = 2 fix; h = 2; # = n/8
c = 1 fix; h = 1; # = n/4
c = 0 fix; h = 0; # = n/2
1 fix = 2 comparisons



Understanding the Heap
• Where is the kth element in the heap? 

• 1st? 2nd? 3rd?


• kth? at what cost?


• Sum of heights 

• At most n-1


• When the sum reaches n-1?



Implementing Heap

Using Array
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Looking for the

Children Quickly

50

24 30

20 21 18 3

12 5 6

50 24 30 20 21 18 3 12 5 6

Starting from 1, not zero, then 
the j th level has 2j-1 elements, 
and there are 2j-1-1 elements in 
the proceeding j-1 levels 
altogether.
So, if E[i] is the kth 
element at level j, then 
i=(2j-1-1)+k, and the 
index of its left child (if 
existing) is

i+(2j-1-k)+2(k-1)+1=2i

The number of children of the 
nodes on level j on the left of E[i]

The number of node on 
the right of E[i] on level j



HeapSort: In-Space 
Implementation

E[1]: The largest key 
to be moved to E[n]

E[n]->K: removed 
to be inserted

E[1]: The largest key in 
current heap, to be 
moved to E[heapsize]

E[heapsize]->K: 
removed to be inserted

Current heap: processed by fixHeap

Heap 
implemented as 
a array (initial)



FixHeap: Using Array
• void fixHeap(Element[ ] E, int heapSize, int root, Element K) 
•     int left = 2 * root; right = 2 * root + 1; 
•     if(left > heapSize) E[root] = K; // root is a leaf. 
•     else 
•         int largerSubHeap; // right or left to filter down. 
•         if(left == heapSize) largerSubHeap = left; // no right SubHeap; 
•         else if(E[left].key > E[right].key) largerSubHeap = left; 
•         else largerSubHeap = right; 
•         if(K.key ≥ E[largerSubHeap].key) E[root] = K; 
•         else E[root] = E[largerSubHeap]; // vacant filtering down one level. 
•         fixHeap(E, heapSize, largerSubHeap, K); 
•     return;



HeapSort: the Algorithm
• Input: E, an unsorted array with n (>0) 

elements, indexed from 1 

• Sorted E, in non-decreasing order 

• Procedure:
void heapSort(Element[ ] E, int n)

    int heapsize;

    constructHeap(E, n, root);

    for(heapsize = n; heapsize ≥ 2; heapsize -= 1)

        Element curMax = E[1];

        Element K = E[heapsize];

        fixHeap(E, heapsize - 1, 1, K);

        E[heapsize] = curMax;

    return;

“array version”



Worst Case Analysis

of HeapSort

• We have: 

• It has been shown that: 

• Recall that: 

• So, 

W(n) = Wcons(n) +
n−1

∑
k=1

Wfix(k)

Wcons(n) ∈ Θ(n) Wfix(k) ≤ 2 log kand

2
n−1

∑
k=1

⌈log k⌉ ≤ 2∫
n

1
log e ln xdx = 2 log e(n ln n − n) = 2(n log n − 1.443n)

W(n) ≤ 2n log n + Θ(n), that is W(n) ∈ Θ(n log n)

Coefficient doubles that of mergeSort approximately



HeapSort: the Right Choice

• For heapSort, 

• Of course, 

• More good news: HeapSort is an in-space 
algorithm (using iteration instead of recursion) 

• It will be more competitive if only the 
coefficient of the leading term can be 
decreased to 1

W(n) ∈ Θ(n log n)

A(n) ∈ Θ(n log n)



Number of Comparisons in 
fixHeap

Procedure: 
    fixHeap(H, K)

        if(H is a leaf) insert K in root (H);

        else

            Set largerSubHeap;

            if(K.key ≥ root(largerSubHeap).key) insert K in root(H)

            else 
                insert root(largerSubHeap) in root(H);

                fixHeap(largerSubHeap, K);

        return

2 comparisons are done in 
filtering down for one level.



A One-Comparison-per-
Level Fixing

Bubble-Up Heap Algorithm: 
    void bubbleUpHeap(Element [ ]E, int root, Element K, int vacant)

        if(vacant == root) E[vacant] = K;

        else

            int parent = vacant/2;

            if(K.key ≤ E[parent].key) E[vacant] = K;

            else 
                E[vacant] = E[parent];

                bubbleUpHeap(E, root, K, parent);

        return

Bubbling up from vacant 
through to the root, recursively



Risky FixHeap
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“Vacant” filtering 
down: left vs. right

In fact, the “risk” is no 
more than “no 
improvement”

Element(55) to be 
inserted bubbling up: 

element vs. parent

Step 1

Step 2
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“Vacant” filtering down 
only half-way

If the element is 
smaller, filtering down 

half-half-way

Improvement by Divide-
and-Conquer

The bubbling up will not 
beyond last vacStop

Step 1

Step 2



Depth Bounded Filtering 
Down

int promote(Element [ ]E, int hStop, int vacant, int h) 
        int vacStop;

        if(h ≤ hStop) vacStop = vacant;

        else if(E[2*vacant].key ≤ E[2*vacant+1].key)

            E[vacant] = E[2*vacant + 1];

            vacStop = promote(E, hStop, 2*vacant + 1, h - 1);

        else 
            E[vacant] = E[2*vacant];

            vacStop = promote(E, hStop, 2*vacant, h - 1);

        return vacStop;

Depth bound



FixHeap Using Divide-and-
Conquer

void fixHeapFast(Element [ ]E, Element K, int vacant, int h) 
        //                              in uppermost call

        if(h ≤ 1) Process heap of height 0 or 1;

        else 

            int hStop = h/2;

            Int vacStop = promote(E, hStop, vacant, h);

            int vacParent = vacStop/2;

            if(E[vacParent].key ≤ K.key)

                E[vacStop] = E[vacParent];

                bubbleUpHeap(E, vacant, K, vacParent);

            else 

     fixHeapFast(E, K, vacStop, hStop);

h = ⌈log(n + 1)/2⌉



Number of Comparisons in 
Accelerated FixHeap

• Moving the vacant one level up or down need one 
comparison exactly in promote or bubbleUpHeap. 

• In a cycle, t calls of promote and 1 call of bubbleUpHeap are 
executed at most. So, the number of comparisons in 
promote and bubbleUpHeap calls are: 

• At most, lg(h) checks for reverse direction are executed. So, 
the number of comparisons in a cycle is at most h+log(h) 

• So, for accelerated heapSort:

t

∑
k=1

⌈ h
2k ⌉ + ⌈ h

2t ⌉ = h = log(n + 1)

Wn(n) = n log n + Θ(n log log n)



Recursion Equation

of Accelerated heapSort

• The recurrence equation about h, which is 
about log(n+1) 

• Assuming T(h)≥h, then:

T(1) = 2

T(h) = ⌈h
2 ⌉ + max(⌈ h

2 ⌉,1 + T(⌊ h
2 ⌋))

T(h) = ⌈h
2 ⌉ + 1 + T(⌊ h

2 ⌋)
T(1) = 2



Solving the Recurrence

Equation by Recursive Tree

T(n) ⌈h/2⌉ + 1

T(⌊n/2⌋) ⌈h/4⌉ + 1

T(⌊n/4⌋) ⌈h/8⌉ + 1

T(1) 1 + 1

⌈log(h + 1)⌉
levels

For sorting a sequence of 
size n, n cycles of fixHeap 
are executed, so:

n(h + ⌈log(h + 1)⌉)



Inductive Proof
• The recurrence equation for fixHeapFast: 

• Proving the following solution by induction: 

• According to the recurrence equation:


• Applying the inductive assumption to the last term:

T(h) = h + ⌈log(h + 1)⌉

T(h + 1) = ⌈(h + 1)/2⌉ + 1 + ⌊(h + 1)/2⌋ + ⌈log(⌊(h + 1)/2⌋ + 1)⌉

T(h + 1) = ⌈(h + 1)/2⌉ + 1 + T(⌊(h + 1)/2⌋)

(It can be proved that for any positive integer: 
                                                      )⌈log(⌊(h)/2⌋ + 1)⌉ + 1 = ⌈log(h + 1)⌉
Wn(n) = n log n + Θ(n log log n) For Accelerated Heap

T(1) = 2

T(h) = ⌈h
2 ⌉ + 1 + T(⌊ h

2 ⌋)



Generalization of a Heap
• d-ary heap 

• Structure / partial order


• How to choose “d”? 

• Top-down: fix the parent node


• Cost: d comparisons in the worst 
case


• Bottom-up: fix the child node


• Cos: always 1

4-art heap



Not only for Sorting
• Eg1: how to find the kth max element? 

• The cost should be f(k)


• Eg2: how to find the first k elements? 

• In sorted order?


• Eg3: how to merge k sorted lists? 

• Eg4: how to find the median dynamically? 

• ...



Thank you!

Q & A


