Introduction to

Algorithm Design and Analysis

[05] HeapSort

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University

https://ics.nju.edu.cn/~xjw/

INn the last class ...

® The sorting problem
e Assumptions
® InsertionSort
e Design
* Analysis: inverse
® QuickSort
e Design

* Analysis

HeapSort

® Heap

® HeapSort

® FixHeap

® ConstructHeap

® Complexity of HeapSort

® Accelerated HeapSort

How HeapSort Works

Elements to
be sorted

* PriOrity *
Queue
Implementations

— | T

Fibonacci Binomial
Heap Heap

Elements sorted

Heap

Elementary
Priority Queue ADT

® “FIFO” in some special sense. The “first” means some kind of
“priority”, such as value (largest or smallest)

* PriorityQ create()
 Precondition: none
e Postconditions: If pg=create(), then, pq refers to a newly created object and

IsEmpty(pt)=true

* boolean isEmpty(PriorityQ pq)
e precondition: none

e int getMax(PriorityQ pq)
e precondition: isEmpty(pq)=false

“*pQg can always be
thought as a sequence

e postconditions: ** of pairs (idi, wi), in
* void insert(PriorityQ pq, int id, float w) non-decreasing order
* preconditions: none of wi;

e postconditions: isEmpty(pg)=Ffalse; **
e void delete(PriorityQ pq)

e precondition: isEmpty(pq)=false

e postconditions: value of isEmpty(pqg) updated; **
* void increaseKey(PriorityQ pq, int id, float newKey)

Heap: an Implementation of
Priority Queue

® A binary tree T is a heap structure if:
* T is complete at least though depth h-1
e All leaves are at depth h or h-1

* All paths to a leaf of depth h are to the left of all paths
to a leaf of depth h-1

® Partial order tree property

e Atree T is a (maximizing) partial order tree if and only if
the key at any node is greater than or equal to the
keys at each of its children (if it has any).

Heap: Examples

The maximal key is

always with the root

Heap: an Implementation of
Priority Queue

Heap
structure

+ >

HeapSort: the Strategy

heapSort(E, n)
Construct H from E, the set of n elements to be sorted;
for(i=n;i=1;1-=1){
curMax = getMax(H);
deleteMax(H);
E[i] = curMax;

}

deleteMax(H)
copy the rightmost element on the lowest level of H into K;
Delete the rightmost element on the lowest level of H;

fixHeap(H, K);

FixHeap

® |nput: A nonempty binary tree H with a “vacant” root and its
two subtrees in partial order. An element K to be inserted.

® QOutput: H with K inserted and satisfying the partial order
tree property.

One comparison:

oP d . largerSubHeap is left- or right-
Mhotavis Subtree(H), the one with larger key at
fixneap(H, K)

its root.
if(H is a leaf) insert K in root(H); Spggial case: rightSubtree is empty.
else
set largerSubHeap; —
If(K.key=root(largerSubHeap).key)
insert K in root(H);
else
insert root(largerSubHeap) in root(H);

fixHeap(largerSubHeap, K); =" “yacant” moving down
return,;

FixHeap: an Example

Vacant

Worst Case Analysis for
fixHeap

® at most in one activation of the procedure
@® The tree height decreases by one in the recursive call

® S0, 2h comparisons are needed in the worst case, where h is the height of the tree

® Procedure: One comparison:
fixneap(H, K) largerSubHeap is left- or right-
if(H is a leaf) insert K in root(H); Subtree(H), the one with larger key at

its root.

else / _ | |
Special case: rightSubtree is empty.
set largerSubHeap; = J pty

If(K.key=root(largerSubHeap).key)
insert K in root(H);
recursion else
\insert root(largerSubHeap) in root(H);

fixHeap(largerSubHeap, K); —————> “Vacant” moving down
return,;

Heap Construction

® Note: Iif left subtree and right subtree both
satisfy the partial order tree property, then
fixHeap(H, root(H)) gets the thing done.

root

® We begin from a Heap Structure H: .

void constructHeap(H) Post-order Traversal
if(H is not a leaf)

constructHeap(left subtree of H);
constructHeap(right subtree of H);
Element K = root(H);
fixHeap(H, K);
return; left right

Correctness of
constructHeap

® Specification

e |nput: A heap structure H, not necessarily
having the partial order tree property.

e Qutput: H with the same nodes rearranged to
satisfy the partial order tree property.

void constructHeap(H)
if(H is not a leaf)
constructHeap(left subtree of H);
constructHeap(right subtree of H);
Element K = root(H);
fixHeap(H, K);
return,;

H is a leaf: base case, satisfied trivially.

Preconditions hold respectively?

Postcondition of constructHeap satisfied?

Linear Time Heap
Construction!

® The recursion equation:
Wn)=Wh—-r—1)+ W(r)+ 2logn
® A special case: H is a complete binary tree:

e The size N=24d-1,
(then, for arbitrary n, N/2<n<N<2n, so W(n)<W(N)<W(2n))
e Note: W(N) =2W((N —1)/2)+21log N

e The Master Theorem applies, with b=c=2, and the
critical exponent E=1, f(N) = 2log N

. 2logN , 2log N , 2N°¢
e Note: Iim = lim = lim
N—oo N1-€ N—o N1=€log2 N-ow ((1 —€)log2)N
e When O<e<1, this limit is equal to zero

e So, 2logN € O(N*7¢) | case 1 satisfied, we have W(n) € O(N)

Direct Analysis of Heap
construction

® Heap construction logn] — opy
P cost = Z n (1)

o+l On)

e From recursion to iteration h=0

e Sum of row sums C =logn fix; h =logn; # = 1
c=2fixx h=2;#=n/8
c=1fix h=1:#=n/4
c=0fix: h=0; #=n/2

1 fix = 2 comparisons

Understanding the Heap

® Where is the kth element in the heap?
o {st? 2nd? 3rd?
e kih? at what cost?

® Sum of heights
At most n-1

e \When the sum reaches n-1?

Implementing Heap
Using Array

ofs[7[1]4]=]6]() () (&
50[24]30[20[21]18] 3 |12] 5 | 6

Looking for the
Children Quickly

Starting from 1, not zero, then @
the | th level has 2)-1 elements,

and there are 2/-1-1 elements In @ @
the proceeding J-1 levels

altogether.

So, if EJ[i] is the kth @ @ @ e

element at level |, then

i=(2I-1-1)+k, and th

:nclle>.< ofJiTts Iz?t Chil% (if @ e o

oo iz (50[24]30f20f21[18] s [12]s [e

The number of nhode on The number of children of the
the right of E[i] on levelj nodes on level j on the left of E[i]

HeapSort: In-Space
Implementation

Heap

Implemented as
| ; i | % | a array (initial)

E[1]: The largest key E[n]->K: removed
to be moved to E[n] to be inserted

E[1]: The largest key in [heapsize]->K:
current heap, to be removed to be inserted
moved to E[heapsize]

Current heap: processed by fixHeap

FixHeap: Using Array

® void fixHeap(Element[] E, int heapSize, int root, Element K)
int left = 2 * root; right = 2 * root + 1;
if(left > heapSize) E[root] = K; // root is a leaf.
else
int largerSubHeap; // right or left to filter down.
if(left == heapSize) largerSubHeap = left; // no right SubHeap;
else if(E[left].key > E[right].key) largerSubHeap = left;
else largerSubHeap = right;
if(K.key = E[largerSubHeap].key) E[root] = K;
else E[root] = E[largerSubHeap]; // vacant filtering down one level.
fixHeap(E, heapSize, largerSubHeap, K);

return;

HeapSort: the Algorithm

® Input: E, an unsorted array with n (>0)
elements, indexed from 1

® Sorted E, in non-decreasing order

® Procedure:
void heapSort(Element| | E. i
int heapsize;

constructHeap(E, n, root);
for(heapsize = n; heapSize = 2; heapsize -= 1)
Element cur = E[1];
Element K= E[heapsize];
fixHeap(E, heapsize - 1, 1, K);
E[heapsize] = curMax;
return;

“array version”

Worst Case Analysis
of HeapSort

n—1
® We have: W(n) =W, (n)+ Z Wi (k)
k=1

® |t has been shown that:

W. (n) € O(n)and W (k) <2logk
® Recall that:) () / 5

n—1 n
22 [logk| < 2[logelnxdx = 2loge(nlnn —n) = 2(nlogn — 1.443n)
k=1 1

® So, W(n) < 2nlogn + O(n), thatis W(n) € O(nlogn)

Coefficient doubles that of mergeSort approximately

HeapSort: the Right Choice

® For heapSort, W(n) € O(nlogn)

® Of course, A(n) € O(nlogn)

® More good news: HeapSort is an in-space
algorithm (using iteration instead of recursion)

® It will be more competitive if only the
coefficient of the leading term can be
decreased to 1

Number of Comparisons in
fixHeap

Procedure:
fixHeap(H, K) 2 comparisons are done in

filtering down for one level.

if(H is a leaf) insert K in root (H);

else
Set largerSubHeap;
iIf(K.key > root(largerSubHeap).key) insert K in root(H)
else
insert root(largerSubHeap) in root(H);
fixHeap(largerSubHeap, K);

return

A One-Comparison-per-
Level Fixing

Bubble-Up Heap Algorithm:
void bubbleUpHeap(Element []E, int root, Element K, int vacant)
if(vacant == root) E[vacant] = K;
else Bubbling up from vacant

int parent = vacant/2; «—

if(K.key < E[parent].key) E[vacant}~ K;

through to the root, recursively

else
E[vacant] = E[parent];
bubbleUpHeap(E, root, K, parent);

return

Risky FixHeap s

improvement”

“Vacant” filtering
down: left vs. right

Improvement by Divide-

and-Conquer
“Vacant” filtering down
only half-way @ @ @
oFN.© () (&
OB O
Step 2
(2 O

Depth Bounded Filtering
Down

int promote(Element [JE, int hStop, int vacant, int h)
w®

S

int vacStop:; " Depth bound

iIf(h < hStop) vacStop = vacant;
else if(E[2*vacant].key < E[2*vacant+1].key)
E[vacant] = E[2*vacant + 1];
vacStop = promote(E, hStop, 2*vacant + 1, h - 1);
else
E[vacant] = E[2*vacant];
vacStop = promote(E, hStop, 2*vacant, h - 1);

return vacStop;

FixHeap Using Divide-and-
Conquer

void fixHeapFast(Element []JE, Element K, int vacant, int h)
//'h = [log(n + 1)/2] in uppermost call
if(h < 1) Process heap of height O or 1;
else
int hStop = h/2;
Int vacStop = promote(E, hStop, vacant, h);
int vacParent = vacStop/2;
if(E[vacParent].key < K.key)
E[vacStop] = E[vacParent];
bubbleUpHeap(E, vacant, K, vacParent);
else
fixHeapFast(E, K, vacStop, hStop);

Number of Comparisons in
Accelerated FixHeap

® Moving the vacant one level up or down need one
comparison exactly in promote or bubbleUpHeap.

® |n a cycle, t calls of promote and 1 call of bubbleUpHeap are
executed at most. So, the number of comparisons in
promote and bubbleUpHeap calls are:

JK | " =h=1 1
Z | T T = log(n + 1)
k=1
® At most, Ig(h) checks for reverse direction are executed. So,
the number of comparisons in a cycle is at most h+log(h)

® So, for accelerated heapSort: Vi/(1;) = nlogn + O(nlog log n)

Recursion Equation
of Accelerated heapSort

® The recurrence equation about h, which is
about log(n+1)

T(1) =2

T(h) = [Q +’”’”‘“’C<[Q’1 +T({SJD

® Assuming T(h)=h, then:
(1) =2

e e rer([2)

Solving the Recurrence
Equation by Recursive Iree

For sorting a sequence of

n(h

[log(h + 1)]

levels

[log(h -

size n, n cycles of fixHeap
are executed, so:

- D)

T(1) =2

Inductive Proof (|2

® The recurrence equation for fixHeapFast:

® Proving the following solution by induction:
T(h)y=h+ [log(h+1)]
e According to the recurrence equation:
Tth+1)=[(h+ D2+ 1+T(|(h+1)/2])

 Applying the inductive assumption to the last term:
Tth+D=[(h+ D21+ 1+ |(h+ 1/2] + [log(|(h+ 1)/2] + 1)]

(It can be proved that for any positive integer:
[log(|(W)/2] + 1) +1 = [log(h+1)])
Wn(n) = nlogn + ®(nloglogn)For Accelerated Heap

Generalization of a Heap

® d-ary heap
e Structure / partial order

® How to choose “d”?

4-art heap

e Top-down: fix the parent node

e Cost: d comparisons in the worst
case / / \

e Bottom-up: fix the child node

e Cos: always 1

Not only for Sorting

® Egl: how to find the kth max element?
* The cost should be f(k)

® Eg2: how to find the first k elements?
* |[n sorted order?

® Eg3: how to merge k sorted lists?

® Eg4: how to find the median dynamically?

Thank youl!
Q&A

