
Introduction to

Algorithm Design and Analysis

[05] HeapSort

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …
• The sorting problem

• Assumptions

• InsertionSort

• Design

• Analysis: inverse

• QuickSort

• Design

• Analysis

HeapSort
• Heap

• HeapSort

• FixHeap

• ConstructHeap

• Complexity of HeapSort

• Accelerated HeapSort

How HeapSort Works

Priority

Queue

Elements to
be sorted Elements sorted

Heap Fibonacci
Heap

Binomial
Heap

Implementations

Elementary

Priority Queue ADT

• “FIFO” in some special sense. The “first” means some kind of
“priority”, such as value (largest or smallest)
• PriorityQ create()

• Precondition: none

• Postconditions: If pq=create(), then, pq refers to a newly created object and

isEmpty(pt)=true
• boolean isEmpty(PriorityQ pq)

• precondition: none

• int getMax(PriorityQ pq)

• precondition: isEmpty(pq)=false

• postconditions: **

• void insert(PriorityQ pq, int id, float w)

• preconditions: none

• postconditions: isEmpty(pq)=false; **

• void delete(PriorityQ pq)

• precondition: isEmpty(pq)=false

• postconditions: value of isEmpty(pq) updated; **

• void increaseKey(PriorityQ pq, int id, float newKey)

**pq can always be
thought as a sequence
of pairs (idi, wi), in
non-decreasing order
of wi

Heap: an Implementation of
Priority Queue

• A binary tree T is a heap structure if:

• T is complete at least though depth h-1

• All leaves are at depth h or h-1

• All paths to a leaf of depth h are to the left of all paths
to a leaf of depth h-1

• Partial order tree property

• A tree T is a (maximizing) partial order tree if and only if
the key at any node is greater than or equal to the
keys at each of its children (if it has any).

Heap: Examples

9

5 7

1 4 3 6

50

24 30

20 21 18 3

12 5 6

The maximal key is
always with the root

Heap: an Implementation of
Priority Queue

Heap

Heap

structure

Partial
order

property

HeapSort: the Strategy
heapSort(E, n)

 Construct H from E, the set of n elements to be sorted;

 for (i = n; i ≥ 1; i -=1){

 curMax = getMax(H);

 deleteMax(H);

 E[i] = curMax;

 }

deleteMax(H)

 copy the rightmost element on the lowest level of H into K;

 Delete the rightmost element on the lowest level of H;

 fixHeap(H, K);

FixHeap
• Input: A nonempty binary tree H with a “vacant” root and its

two subtrees in partial order. An element K to be inserted.

• Output: H with K inserted and satisfying the partial order
tree property.

• Procedure:
fixheap(H, K)

 if(H is a leaf) insert K in root(H);

 else

 set largerSubHeap;

 if(K.key≥root(largerSubHeap).key)

 insert K in root(H);

 else

 insert root(largerSubHeap) in root(H);

 fixHeap(largerSubHeap, K);

 return;

One comparison:

largerSubHeap is left- or right-
Subtree(H), the one with larger key at
its root.

Special case: rightSubtree is empty.

“Vacant” moving down

FixHeap: an Example
50

24 30

20 21 18 3

12 5 6

24 30

20 21 18 3

12 5

Vacant

K=6

30

24

20 21 18 3

12 5
K=6

30

24 18

20 21 3

12 5
K=6

Worst Case Analysis for
fixHeap

• 2 comparisons at most in one activation of the procedure

• The tree height decreases by one in the recursive call

• So, 2h comparisons are needed in the worst case, where h is the height of the tree

• Procedure:
fixheap(H, K)

 if(H is a leaf) insert K in root(H);

 else

 set largerSubHeap;

 if(K.key≥root(largerSubHeap).key)

 insert K in root(H);

 else

 insert root(largerSubHeap) in root(H);

 fixHeap(largerSubHeap, K);

 return;

One comparison:

largerSubHeap is left- or right-
Subtree(H), the one with larger key at
its root.

Special case: rightSubtree is empty.

“Vacant” moving down

recursion

Heap Construction
• Note: if left subtree and right subtree both

satisfy the partial order tree property, then
fixHeap(H, root(H)) gets the thing done.

• We begin from a Heap Structure H:

void constructHeap(H)

 if(H is not a leaf)

 constructHeap(left subtree of H);

 constructHeap(right subtree of H);

 Element K = root(H);

 fixHeap(H, K);

 return;

root

Post-order Traversal

left right

Correctness of

constructHeap

• Specification

• Input: A heap structure H, not necessarily
having the partial order tree property.

• Output: H with the same nodes rearranged to
satisfy the partial order tree property.

void constructHeap(H)

 if(H is not a leaf)

 constructHeap(left subtree of H);

 constructHeap(right subtree of H);

 Element K = root(H);

 fixHeap(H, K);

 return;

H is a leaf: base case, satisfied trivially.

Preconditions hold respectively?

Postcondition of constructHeap satisfied?

Linear Time Heap

Construction!

• The recursion equation:

• A special case: H is a complete binary tree:

• The size N=2d-1,

• Note:

• The Master Theorem applies, with b=c=2, and the
critical exponent E=1,

• Note:

• When 0<ε<1, this limit is equal to zero

• So, , case 1 satisfied, we have

W(n) = W(n − r − 1) + W(r) + 2 log n

W(N) = 2W((N − 1)/2) + 2 log N

f(N) = 2 log N

lim
N→∞

2 log N
N1−ϵ

= lim
N→∞

2 log N
N1−ϵ log 2

= lim
N→∞

2Nϵ

((1 − ϵ)log 2)N

2 log N ∈ O(NE−ϵ) W(n) ∈ Θ(N)

(then, for arbitrary n, N/2<n<N≤2n, so W(n)≤W(N)≤W(2n))

Direct Analysis of Heap

construction

• Heap construction

• From recursion to iteration

• Sum of row sums

cost =
⌊log n⌋

∑
h=0

n
O(h)
2h+1

= O(n)

c = logn fix; h = logn; # = 1
c = 2 fix; h = 2; # = n/8
c = 1 fix; h = 1; # = n/4
c = 0 fix; h = 0; # = n/2
1 fix = 2 comparisons

Understanding the Heap
• Where is the kth element in the heap?

• 1st? 2nd? 3rd?

• kth? at what cost?

• Sum of heights

• At most n-1

• When the sum reaches n-1?

Implementing Heap

Using Array

9

5 7

1 4 3 6

50

24 30

20 21 18 3

12 5 69 5 7 1 4 3 6

50 24 30 20 21 18 3 12 5 6

Looking for the

Children Quickly

50

24 30

20 21 18 3

12 5 6

50 24 30 20 21 18 3 12 5 6

Starting from 1, not zero, then
the j th level has 2j-1 elements,
and there are 2j-1-1 elements in
the proceeding j-1 levels
altogether.
So, if E[i] is the kth
element at level j, then
i=(2j-1-1)+k, and the
index of its left child (if
existing) is

i+(2j-1-k)+2(k-1)+1=2i

The number of children of the
nodes on level j on the left of E[i]

The number of node on
the right of E[i] on level j

HeapSort: In-Space
Implementation

E[1]: The largest key
to be moved to E[n]

E[n]->K: removed
to be inserted

E[1]: The largest key in
current heap, to be
moved to E[heapsize]

E[heapsize]->K:
removed to be inserted

Current heap: processed by fixHeap

Heap
implemented as
a array (initial)

FixHeap: Using Array
• void fixHeap(Element[] E, int heapSize, int root, Element K)
• int left = 2 * root; right = 2 * root + 1;
• if(left > heapSize) E[root] = K; // root is a leaf.
• else
• int largerSubHeap; // right or left to filter down.
• if(left == heapSize) largerSubHeap = left; // no right SubHeap;
• else if(E[left].key > E[right].key) largerSubHeap = left;
• else largerSubHeap = right;
• if(K.key ≥ E[largerSubHeap].key) E[root] = K;
• else E[root] = E[largerSubHeap]; // vacant filtering down one level.
• fixHeap(E, heapSize, largerSubHeap, K);
• return;

HeapSort: the Algorithm
• Input: E, an unsorted array with n (>0)

elements, indexed from 1

• Sorted E, in non-decreasing order

• Procedure:
void heapSort(Element[] E, int n)

 int heapsize;

 constructHeap(E, n, root);

 for(heapsize = n; heapsize ≥ 2; heapsize -= 1)

 Element curMax = E[1];

 Element K = E[heapsize];

 fixHeap(E, heapsize - 1, 1, K);

 E[heapsize] = curMax;

 return;

“array version”

Worst Case Analysis

of HeapSort

• We have:

• It has been shown that:

• Recall that:

• So,

W(n) = Wcons(n) +
n−1

∑
k=1

Wfix(k)

Wcons(n) ∈ Θ(n) Wfix(k) ≤ 2 log kand

2
n−1

∑
k=1

⌈log k⌉ ≤ 2∫
n

1
log e ln xdx = 2 log e(n ln n − n) = 2(n log n − 1.443n)

W(n) ≤ 2n log n + Θ(n), that is W(n) ∈ Θ(n log n)

Coefficient doubles that of mergeSort approximately

HeapSort: the Right Choice

• For heapSort,

• Of course,

• More good news: HeapSort is an in-space
algorithm (using iteration instead of recursion)

• It will be more competitive if only the
coefficient of the leading term can be
decreased to 1

W(n) ∈ Θ(n log n)

A(n) ∈ Θ(n log n)

Number of Comparisons in
fixHeap

Procedure:
 fixHeap(H, K)

 if(H is a leaf) insert K in root (H);

 else

 Set largerSubHeap;

 if(K.key ≥ root(largerSubHeap).key) insert K in root(H)

 else
 insert root(largerSubHeap) in root(H);

 fixHeap(largerSubHeap, K);

 return

2 comparisons are done in
filtering down for one level.

A One-Comparison-per-
Level Fixing

Bubble-Up Heap Algorithm:
 void bubbleUpHeap(Element []E, int root, Element K, int vacant)

 if(vacant == root) E[vacant] = K;

 else

 int parent = vacant/2;

 if(K.key ≤ E[parent].key) E[vacant] = K;

 else
 E[vacant] = E[parent];

 bubbleUpHeap(E, root, K, parent);

 return

Bubbling up from vacant
through to the root, recursively

Risky FixHeap
90

80 75

25

45

70 35

60

50

40 15

65

80

25

45

70 35

60

80 65

70 75

25

45

60 35

50

90

65

75

25

45

35

40

15

“Vacant” filtering
down: left vs. right

In fact, the “risk” is no
more than “no
improvement”

Element(55) to be
inserted bubbling up:

element vs. parent

Step 1

Step 2

90

80 75

25

45

70 35

60

50

40 15

65

80

25

45

70 35

60

80 65

70 75

25

45

35

60

90

65

75

25

45

35

50

40 15

“Vacant” filtering down
only half-way

If the element is
smaller, filtering down

half-half-way

Improvement by Divide-
and-Conquer

The bubbling up will not
beyond last vacStop

Step 1

Step 2

Depth Bounded Filtering
Down

int promote(Element []E, int hStop, int vacant, int h)
 int vacStop;

 if(h ≤ hStop) vacStop = vacant;

 else if(E[2*vacant].key ≤ E[2*vacant+1].key)

 E[vacant] = E[2*vacant + 1];

 vacStop = promote(E, hStop, 2*vacant + 1, h - 1);

 else
 E[vacant] = E[2*vacant];

 vacStop = promote(E, hStop, 2*vacant, h - 1);

 return vacStop;

Depth bound

FixHeap Using Divide-and-
Conquer

void fixHeapFast(Element []E, Element K, int vacant, int h)
 // in uppermost call

 if(h ≤ 1) Process heap of height 0 or 1;

 else

 int hStop = h/2;

 Int vacStop = promote(E, hStop, vacant, h);

 int vacParent = vacStop/2;

 if(E[vacParent].key ≤ K.key)

 E[vacStop] = E[vacParent];

 bubbleUpHeap(E, vacant, K, vacParent);

 else

 fixHeapFast(E, K, vacStop, hStop);

h = ⌈log(n + 1)/2⌉

Number of Comparisons in
Accelerated FixHeap

• Moving the vacant one level up or down need one
comparison exactly in promote or bubbleUpHeap.

• In a cycle, t calls of promote and 1 call of bubbleUpHeap are
executed at most. So, the number of comparisons in
promote and bubbleUpHeap calls are:

• At most, lg(h) checks for reverse direction are executed. So,
the number of comparisons in a cycle is at most h+log(h)

• So, for accelerated heapSort:

t

∑
k=1

⌈ h
2k ⌉ + ⌈ h

2t ⌉ = h = log(n + 1)

Wn(n) = n log n + Θ(n log log n)

Recursion Equation

of Accelerated heapSort

• The recurrence equation about h, which is
about log(n+1)

• Assuming T(h)≥h, then:

T(1) = 2

T(h) = ⌈h
2 ⌉ + max(⌈ h

2 ⌉,1 + T(⌊ h
2 ⌋))

T(h) = ⌈h
2 ⌉ + 1 + T(⌊ h

2 ⌋)
T(1) = 2

Solving the Recurrence

Equation by Recursive Tree

T(n) ⌈h/2⌉ + 1

T(⌊n/2⌋) ⌈h/4⌉ + 1

T(⌊n/4⌋) ⌈h/8⌉ + 1

T(1) 1 + 1

⌈log(h + 1)⌉
levels

For sorting a sequence of
size n, n cycles of fixHeap
are executed, so:

n(h + ⌈log(h + 1)⌉)

Inductive Proof
• The recurrence equation for fixHeapFast:

• Proving the following solution by induction:

• According to the recurrence equation:

• Applying the inductive assumption to the last term:

T(h) = h + ⌈log(h + 1)⌉

T(h + 1) = ⌈(h + 1)/2⌉ + 1 + ⌊(h + 1)/2⌋ + ⌈log(⌊(h + 1)/2⌋ + 1)⌉

T(h + 1) = ⌈(h + 1)/2⌉ + 1 + T(⌊(h + 1)/2⌋)

(It can be proved that for any positive integer:
)⌈log(⌊(h)/2⌋ + 1)⌉ + 1 = ⌈log(h + 1)⌉
Wn(n) = n log n + Θ(n log log n) For Accelerated Heap

T(1) = 2

T(h) = ⌈h
2 ⌉ + 1 + T(⌊ h

2 ⌋)

Generalization of a Heap
• d-ary heap

• Structure / partial order

• How to choose “d”?

• Top-down: fix the parent node

• Cost: d comparisons in the worst
case

• Bottom-up: fix the child node

• Cos: always 1

4-art heap

Not only for Sorting
• Eg1: how to find the kth max element?

• The cost should be f(k)

• Eg2: how to find the first k elements?

• In sorted order?

• Eg3: how to merge k sorted lists?

• Eg4: how to find the median dynamically?

• ...

Thank you!

Q & A

