
Introduction to

Algorithm Design and Analysis

[06] MergeSort

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …
• Heap

• Partial order property

• FixHeap

• ConstructHeap

• Heap structure

• Array-based implementation

• HeapSort

• Complexity

• Accelerated HeapSort

MergeSort

• MergeSort

• Worst-case analysis of MergeSort

• Lower Bounds for comparison-based sorting

• Worst-case

• Average-case

MergeSort: the Strategy
• Easy division

• No comparison is conducted during the
division

• Minimizing the size difference between the
divided subproblems

• Merging two sorted subranges

• Using Merge

Merging Sorted Arrays

compare

A[0]
A[i]

A[k-1] B[0]
B[j]

B[m-1]

… … … … … … … …

… … … …

Merge: the Specification
• Input

• Array A with k elements and B with m elements,
whose keys are in non-decreasing order

• Output

• Array C containing n=k+m elements from A and
B in non-decreasing order

• C is passed in and the algorithm fills it

Merge: Recursive Version
merge(A,B,C)

 if (A is empty)

 rest of C = rest of B

 else if (B is empty)

 rest of C = rest of A

 else
 if (first of A ≤ first of B)

 first of C = first of A

 merge(rest of A, B, rest of C)

 else

 first of C = first of B

 merge(A, rest of B, rest of C)

 return

Base cases

Worst Case Complexity
of Merge

• Observations
• Worst case is that the last comparison is conducted

between A[k-1] and B[m-1]

• After each comparison, at least one element is

inserted into Array C, at least.
• After entering Array C, an element will never be

compared again.

• After the last comparison, at least two elements

have not yet been moved to Array C. So at most
n-1 comparisons are done.

• In worst case, n-1 comparisons are done, where
n=k+m

Optimality of Merge
• Any algorithm to merge two sorted arrays,

each containing k=m=n/2 entries, by
comparison of keys, does at least n-1
comparisons in the worst case.
• Choose keys so that:

b0<a0<b1< a1<...<bi<ai<bi+1,...,<bm-1<ak-1

• Then the algorithm must compare ai with bi for
every i in [0, m-1], and must compare ai with
bi+1 for every i in [0, m-2], so, there are n-1
comparisons.

Valid for |k-m| ≤ 1, as well.

Space Complexity of Merge

• An algorithm is “in space”

• If the extra space it has to use is in Θ(1)

• Merge is not a algorithm “in space”

• Since it needs O(n) extra space to store the
merged sequence during the merging process.

Overlapping Arrays
for Merge

Before the merge

0 k-1 k+m-1 0 B m-1

extra

space

Before the merge

0 k-1 k+m-1 0 m-1

Merge from the right

Merged

0 k-1 k+m-1 0 m-1Finished

A

MergeSort
• Input: Array E and indexes first, and last, such

that the elements of E[i] are defined for
first≤i≤last.

• Output: E[first],…,E[last] is a sorted
rearrangement of the same elements.

• Procedure
void mergeSort(Element[] E, int first, int last)

 if (first < last)

 int mid = (first+last) / 2;

 mergeSort(E, first, mid);

 mergeSort(E, mid + 1, last);

 merge(E, first, mid, last);

 return;

Analysis of MergeSort

• The recurrence equation for MergeSort

Where n = last - first + 1, the size of range to be sorted

• The Master Theorem applies for the equation,
so:

W(n) = W(⌊n /2⌋) + W(⌈n /2⌉) + n − 1
W(1) = 0

W(n) ∈ Θ(n log n)

Recursion Tree for
MergeSort

Base cases occur
at depth lg(n+1)-1

and lg(n+1)
n-1 Level 0

n-2 Level 1

n-4 Level 2

n-8 Level 3

Note:

non recursive costs on
level k is n-2k for all level
without base case node.

T(n) n-1 T(n/2) n/2-1

T(n/4) n/4-1 T(n/8) n/8-1

Non-complete
Recursion Tree

Example: n=11

2D-1 nodes

Since each nonbase-case
node has 2 children, there
are (n-B)/2 nonbase-case

nodes at depth D-1

n-B base-case nodes

No nonbase-case nodes at

this depth

B base-case nodes on
the second lowest level

Number of Comparison
of MergeSort

• The maximum depth D of the recursive tree is ⎡lg(n+1)⎤.

• Let B base case nodes on depth D-1, and n-B on depth D, (Note: base case node has non-recursive cost
0).

• (n-B)/2 non-base case nodes at depth D-1, each has non-recursive cost 1.
• So:

• ⎡nlg(n)-n+1⎤ ≤ number of comparison ≤ ⎡nlg(n)-0.914n⎤

1)lg(lg)(,

lglg,21,12

12)(,

2,)22(

2
)12()1(

2
)2()(

2

0

1

+−−=

+=<≤=+=

+−=

−==+−

−
+−−−=

−
+−=∑

−

=

−

nnnnWSo

nDthen
n
B

n
Let

nDnWSo

nBisthatnBBSince

BnDnBnnnW

D

D

DD

D

d

Dd

αα

ααα

The MergeSort D&C
• Counting the number of inversions

• Brute force: O(n2)

• Can we use divide & conquer

• In O(nlogn)=>combination in O(n)

• MergeSort as the carrier

• Sorted subarrays

• A[0..k-1] and B[0..m-1]

• Compare the left and right elements

• A[i] v.s. B[j]

The MergeSort D&C

compare

A[0]
A[i]

A[k-1] B[0]
B[j]

B[m-1]

… … … … … … … …

if A[i]>B[j]

 (i,j) is an inversion

 All (i’,j) are inversions (i’>i)

 B[j] is selected

if A[i]<B[j]

 No inversion found

 A[i] is selected

The MergeSort D&C
• The nearest pair

• n nodes on a plane

• The pair with the minimum distance

• The MergeSort D&C

• T(n)=2T(n/2)+f(n)

• f(n) must be O(n)

• How?

The MergeSort D&C

• Max-sum subsequence

• Maxima on a plane

• Finding the frequent element

• Integer/matrix multiplication

• …

Just evenly divide

Linear-time combination

T(n)=2T(n/2)+O(n)

T(n)∈O(nlogn)

Lower Bounds for
Comparison-based Sorting

• Upper bound, e.g., worst-case cost

• For any possible input, the cost of the specific
algorithm A is no more than the upper bound

• Max{cost(i) | i is an input}

• Lower bound, e.g., comparison-based sorting

• For any possible (comparison-based) sorting algorithm
A, the worst-case cost is no less than the lower bound

• Min{worst-case(a) | a is an algorithm}

2-Tree
• 2-Tree • Common Binary Tree

internal nodes

external nodes
no child any type Both left and right

children of these nodes
are empty tree

Decision Tree for Sorting
 An example for n=3

• Decision tree is a 2-tree (Assuming no same keys)
• The action of Sort on a particular input corresponds to

following on path in its decision tree from the root to a
leaf associated to the specific output

2:3

1:3 2:3

1:2

1:3 x1,x2,x3 x2,x1,x3

x1,x3,x2
x3,x1,x2 x2,x3,x1

x3,x2,x1

Internal node

External node

Characterizing the
Decision Tree

• For a sequence of n distinct elements, there are n!
different permutation
• So, the decision tree has at least n! leaves, and

exactly n! leaves can be reached from the root.

• So, for the purpose of lower bounds evaluation,

we use trees with exactly n! leaves.

• The number of comparison done in the worst case

is the height of the tree.
• The average number of comparison done is the

average of the lengths of all paths from the root to
a leaf.

Lower Bound for Worst
Case

• Theorem: Any algorithm to sort n items by
comparisons of keys must do at least ⎡lgn!⎤, or
approximately ⎡nlgn-1.443n⎤, key comparisons in the
worst case.

• Note: Let L=n!, which is the number of leaves, then L≤2h,

where h is the height of the tree, that is h≥ ⎡lgL⎤=⎡lgn!⎤

• For the asymptotic behavior:

derived using:

)lg(
2

lg
22

lg]
2

)...1(lg[)!lg(
2

nnnnnnnnn

n

Θ∈⎟
⎠

⎞
⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎥

⎤
⎢⎢

⎡
−≥

∑
=

=
n

j

jn
1

)lg(!lg

External Path Length (EPL)

• The EPL of a 2-tree t is defined as follows:
• [Base case] 0 for a single external node

• [Recursion] t is non-leaf with sub-trees L and

R, then the sum of:

• the external path length of L;

• the number of external node of L;

• the external path length of R;

• the number of external node of R;

 More Balanced 2-tree,
Less EPL

X

Y

X

Y

level k

level h-1

level h

level k+1

Guess and prove:

 More Balanced 2-tree,
Less EPL

Assuming that h-k>1, when calculating epl, h+h+k is replaced by
(h-1)+2(k+1). The net change in epl is k-h+1<0, that is, the epl
decreases.

So, more balanced 2-tree has smaller epl.

X

Y

X

Y

level k

level h-1

level h

level k+1

Guess and prove:

Properties of EPL
• Let t is a 2-tree, then the epl of t is the sum of

the paths from the root to each external node.
• epl ≥mlg(m), where m is the number of external nodes

in t
• epl=eplL+eplR+m≥ mLlg(mL)+mRlg(mR)+m,

• note f(x)+f(y)≥2f((x+y)/2) for f(x)=xlgx

• so,

 epl ≥ 2((mL+mR)/2)lg((mL+mR)/2)+m = m(lg(m)-1)+m

=mlgm.

Lower Bound for Average
Behavior

• Since a decision tree with L leaves is a 2-tree, the

average path length from the root to a leaf is

• Recall that epl ≥ Llg(L).

• Theorem: The average number of comparison done
by an algorithm to sort n items by comparison of
keys is at least lg(n!), which is about nlgn-1.443n.

L
epl

MergeSort Has Optimal
Average Performance

• The average number of comparisons done by
an algorithm to sort n items by comparison of
keys is at least about nlgn-1.443n

• The worst complexity of MergeSort is in Θ(nlgn)
• But, the average performance can not be

worse than the worst case performance.
• So, MergeSort is optimal as for its average

performance.

Thank you!

Q & A

