
Introduction to 

Algorithm Design and Analysis

[06] MergeSort

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/


In the last class …
• Heap 

• Partial order property


• FixHeap


• ConstructHeap


• Heap structure


• Array-based implementation


• HeapSort 

• Complexity


• Accelerated HeapSort



MergeSort

• MergeSort 

• Worst-case analysis of MergeSort


• Lower Bounds for comparison-based sorting 

• Worst-case


• Average-case



MergeSort: the Strategy
• Easy division 

• No comparison is conducted during the 
division


• Minimizing the size difference between the 
divided subproblems


• Merging two sorted subranges 

• Using Merge



Merging Sorted Arrays

compare

A[0]
A[i]

A[k-1] B[0]
B[j]

B[m-1]

… … … … … … … …

… … … …



Merge: the Specification
• Input 

• Array A with k elements and B with m elements, 
whose keys are in non-decreasing order


• Output  

• Array C containing n=k+m elements from A and 
B in non-decreasing order


• C is passed in and the algorithm fills it



Merge: Recursive Version 
merge(A,B,C)

    if (A is empty)

        rest of C = rest of B

    else if (B is empty)

        rest of C = rest of A

    else 
        if (first of A ≤ first of B)

            first of C = first of A

            merge(rest of A, B, rest of C)

        else

            first of C = first of B

            merge(A, rest of B, rest of C)

    return

Base cases



Worst Case Complexity 
of Merge

• Observations 
• Worst case is that the last comparison is conducted 

between A[k-1] and B[m-1]

• After each comparison, at least one element is 

inserted into Array C, at least. 
• After entering Array C, an element will never be 

compared again.

• After the last comparison, at least two elements 

have not yet been moved to Array C. So at most 
n-1 comparisons are done.


• In worst case, n-1 comparisons are done, where 
n=k+m



Optimality of Merge
• Any algorithm to merge two sorted arrays, 

each containing k=m=n/2 entries, by 
comparison of keys, does at least n-1 
comparisons in the worst case. 
• Choose keys so that:

b0<a0<b1< a1<...<bi<ai<bi+1,...,<bm-1<ak-1 

• Then the algorithm must compare ai with bi for 
every i in [0, m-1], and must compare ai with 
bi+1 for every i in [0, m-2], so, there are n-1 
comparisons.

Valid for |k-m| ≤ 1, as well.



Space Complexity of Merge

• An algorithm is “in space” 

• If the extra space it has to use is in Θ(1)


• Merge is not a algorithm “in space” 

• Since it needs O(n) extra space to store the 
merged sequence during the merging process.



Overlapping Arrays 
for Merge

Before the merge

0 k-1 k+m-1 0 B m-1

extra

space

Before the merge

0 k-1 k+m-1 0 m-1

Merge from the right

Merged

0 k-1 k+m-1 0 m-1Finished

A



MergeSort
• Input: Array E and indexes first, and last, such 

that the elements of E[i] are defined for 
first≤i≤last. 

• Output: E[first],…,E[last] is a sorted 
rearrangement of the same elements. 

• Procedure 
void mergeSort(Element[] E, int first, int last)

    if (first < last)

        int mid = (first+last) / 2;

        mergeSort(E, first, mid);

        mergeSort(E, mid + 1, last);

        merge(E, first, mid, last);

    return;



Analysis of MergeSort

• The recurrence equation for MergeSort 

Where n = last - first + 1, the size of range to be sorted


• The Master Theorem applies for the equation, 
so: 

W(n) = W(⌊n /2⌋) + W(⌈n /2⌉) + n − 1
W(1) = 0

W(n) ∈ Θ(n log n)



Recursion Tree for 
MergeSort

Base cases occur 
at depth lg(n+1)-1 

and lg(n+1)
n-1 Level 0

n-2 Level 1

n-4 Level 2

n-8 Level 3

Note: 

non recursive costs on 
level k is n-2k for all level 
without base case node.

T(n) n-1 T(n/2) n/2-1

T(n/4) n/4-1 T(n/8) n/8-1



Non-complete 
Recursion Tree

Example: n=11

2D-1 nodes

Since each nonbase-case 
node has 2 children, there 
are (n-B)/2 nonbase-case 

nodes at depth D-1

n-B base-case nodes

No nonbase-case nodes at 

this depth

B base-case nodes on 
the second lowest level



Number of Comparison  
of MergeSort

• The maximum depth D of the recursive tree is ⎡lg(n+1)⎤.  

• Let B base case nodes on depth D-1, and n-B on depth D, (Note: base case node has non-recursive cost 
0). 

• (n-B)/2 non-base case nodes at depth D-1, each has non-recursive cost 1. 
• So: 

• ⎡nlg(n)-n+1⎤ ≤ number of comparison ≤ ⎡nlg(n)-0.914n⎤
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The MergeSort D&C
• Counting the number of inversions 

• Brute force: O(n2)


• Can we use divide & conquer


• In O(nlogn)=>combination in O(n)


• MergeSort as the carrier 

• Sorted subarrays


• A[0..k-1] and B[0..m-1]


• Compare the left and right elements


• A[i] v.s. B[j]



The MergeSort D&C

compare

A[0]
A[i]

A[k-1] B[0]
B[j]

B[m-1]

… … … … … … … …

if A[i]>B[j] 

    (i,j) is an inversion

    All (i’,j) are inversions (i’>i)

    B[j] is selected 

if A[i]<B[j] 

    No inversion found

    A[i] is selected 



The MergeSort D&C
• The nearest pair 

• n nodes on a plane


• The pair with the minimum distance


• The MergeSort D&C 

• T(n)=2T(n/2)+f(n)


• f(n) must be O(n)


• How?



The MergeSort D&C

• Max-sum subsequence 

• Maxima on a plane 

• Finding the frequent element 

• Integer/matrix multiplication 

• …

Just evenly divide

Linear-time combination

T(n)=2T(n/2)+O(n)

T(n)∈O(nlogn)



Lower Bounds for 
Comparison-based Sorting

• Upper bound, e.g., worst-case cost 

• For any possible input, the cost of the specific 
algorithm A is no more than the upper bound


• Max{cost(i) | i is an input}


• Lower bound, e.g., comparison-based sorting 

• For any possible (comparison-based) sorting algorithm 
A, the worst-case cost is no less than the lower bound


• Min{worst-case(a) | a is an algorithm}



2-Tree
• 2-Tree • Common Binary Tree

internal nodes

external nodes 
no child any type Both left and right 

children of these nodes 
are empty tree



Decision Tree for Sorting
 An example for n=3 

• Decision tree is a 2-tree (Assuming no same keys) 
• The action of Sort on a particular input corresponds to 

following on path in its decision tree from the root to a 
leaf associated to the specific output

 

2:3 

1:3 2:3 

1:2 

1:3 x1,x2,x3 x2,x1,x3 

x1,x3,x2 
x3,x1,x2 x2,x3,x1 

x3,x2,x1 

Internal node

External node



Characterizing the  
Decision Tree

• For a sequence of n distinct elements, there are n! 
different permutation 
• So, the decision tree has at least n! leaves, and 

exactly n! leaves can be reached from the root. 

• So, for the purpose of lower bounds evaluation, 

we use trees with exactly n! leaves.

• The number of comparison done in the worst case 

is the height of the tree. 
• The average number of comparison done is the 

average of the lengths of all paths from the root to 
a leaf.



Lower Bound for Worst 
Case

• Theorem: Any algorithm to sort n items by 
comparisons of keys must do at least ⎡lgn!⎤, or 
approximately ⎡nlgn-1.443n⎤, key comparisons in the 
worst case.

• Note: Let L=n!, which is the number of leaves, then L≤2h, 

where h is the height of the tree, that is h≥ ⎡lgL⎤=⎡lgn!⎤

• For the asymptotic behavior:


derived using: 
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External Path Length (EPL)

• The EPL of a 2-tree t is defined as follows: 
• [Base case] 0 for a single external node

• [Recursion] t is non-leaf with sub-trees L and 

R, then the sum of:

• the external path length of L;

• the number of external node of L;

• the external path length of R;

• the number of external node of R;



 More Balanced 2-tree,  
Less EPL

X

Y

X

Y

level k

level h-1

level h

level k+1

Guess and prove: 



 More Balanced 2-tree,  
Less EPL

  

Assuming that h-k>1, when calculating epl, h+h+k is replaced by 
(h-1)+2(k+1). The net change in epl is k-h+1<0, that is, the epl 
decreases.  

So, more balanced 2-tree has smaller epl.

X

Y

X

Y

level k

level h-1

level h

level k+1

Guess and prove: 



Properties of EPL
• Let t is a 2-tree, then the epl of t is the sum of 

the paths from the root to each external node. 
• epl ≥mlg(m), where m is the number of external nodes 

in t 
• epl=eplL+eplR+m≥ mLlg(mL)+mRlg(mR)+m,  

• note f(x)+f(y)≥2f((x+y)/2) for f(x)=xlgx


•  so, 

   epl ≥ 2((mL+mR)/2)lg((mL+mR)/2)+m = m(lg(m)-1)+m 

=mlgm.



Lower Bound for Average 
Behavior

• Since a decision tree with L leaves is a 2-tree, the 

average path length from the root to a leaf is 

• Recall that epl ≥ Llg(L).


• Theorem: The average number of comparison done 
by an algorithm to sort n items by comparison of 
keys is at least lg(n!), which is about nlgn-1.443n.

L
epl



MergeSort Has Optimal 
Average Performance

• The average number of comparisons done by 
an algorithm to sort n items by comparison of 
keys is at least about nlgn-1.443n 

• The worst complexity of MergeSort is in Θ(nlgn) 
• But, the average performance can not be 

worse than the worst case performance. 
• So, MergeSort is optimal as for its average 

performance.



Thank you!

Q & A


