Introduction to

Algorithm Design and Analysis

[06] MergeSort

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University

https://ics.nju.edu.cn/~xjw/

INn the last class ...

® Heap

e Partial order property
 FixHeap

e ConstructHeap

e Heap structure

* Array-based implementation
® HeapSort
e Complexity

e Accelerated HeapSort

MergeSort

® MergeSort
e \Worst-case analysis of MergeSort

® Lower Bounds for comparison-based sorting
 Worst-case

e Average-case

MergeSort: the Strategy

® Easy division

e No comparison is conducted during the
division

 Minimizing the size difference between the
divided subproblems

® Merging two sorted subranges

e Using Merge

Merging Sorted Arrays

Alil

]

Merge: the Specification

® |[nput

e Array A with k elements and B with m elements,
whose keys are in non-decreasing order

® Output

e Array C containing n=k+m elements from A and
B in hon-decreasing order

e C is passed in and the algorithm fills it

Merge: Recursive Version

merge(A,B,C)
if (A is empty)
rest of C = rest of B
else if (B is empty)
rest of C = rest of A
else
if (first of A < first of B)
first of C = first of A
merge(rest of A, B, rest of C)
else
first of C = first of B
merge(A, rest of B, rest of C)
return

Worst Case Complexity
of Merge

® Observations
e \Worst case is that the last comparison is conducted
between Alk-1] and B[m-1]
e After each comparison, at least one element is
inserted into Array C, at least.

e After entering Array C, an element will never be
compared again.

e After the last comparison, at least two elements
have not yet been moved to Array C. So at most
n-1 comparisons are done.

® In worst case, n-1 comparisons are done, where
N=K+m

Optimality of Merge

® Any algorithm to merge two sorted arrays,
each containing k=m=n/2 entries, by

comparison of keys, does at least n-1
comparisons in the worst case.

e Choose keys so that:

bo<a0<b1< a1<...<bl-<al-<b,-+1,...,<bm_1<ak_1

e Then the algorithm must compare a, with b, for
every i in [0, m-1], and must compare a, with

b.. for every iin [0, m-2], so, there are n-1
comparisons.

Valid for |k-m| < 1, as well.

Space Complexity of Merge

® An algorithm is “Iin space”
e |f the extra space it has to use is in ©(1)
® Merge is not a algorithm “in space”

e Since it needs O(n) extra space to store the
merged sequence during the merging process.

Overlapping Arrays
for Merge _

Before the merge space

0

Before the merge

O Finished k+m-1 m—1

MergeSort

® Input: Array E and indexes first, and last, such
that the elements of E[i] are defined for
first<i<last.

® Output: E[first],...,E[last] is a sorted
rearrangement of the same elements.
® Procedure
void mergeSort(Element[] E, int first, int last)
if (first < last)
int mid = (first+last) / 2;
mergeSort(E, first, mid);
mergeSort(E, mid + 1, last);
merge(E, first, mid, last);
return;

Analysis of MergeSort

® The recurrence equation for MergeSort
W(n) = W(|n/2])+ W([n/2]))+n—-1
W(l)=0
Where n = last - first + 1, the size of range to be sorted

® The Master Theorem applies for the equation,

SO.
W(n) € O(nlog n)

Base cases occur

Recursion Tree for

at depth Ig(n+1)- 1
and Ig(n+1)

n-1

n/4-1

n/8-1

MergeSort

n-1 Level O

n-2 Level 1

n-4 Level 2

n-8 Level 3

Note:
NON recursive costs on

level k is n-2k for all level
without base case node.

Non-complete
Recursion Tree

Example: n=11
A.A

B base-case nodes on
the second lowest level

2D-1 nodes

\

Since each nonbase-case
Nn-B base-case nodes

node has 2 children, there
No nonbase-case nodes at
are (n-B)/2 nonbase-case .
this depth

nodes at depth D-1

Number of Comparison
of MergeSort

® The maximum depth D of the recursive tree is [Ig(n+1) | .

® |et B base case nodes on depth D-1, and n-B on depth D, (Note: base case node has non-recursive cost

0).
® (n-B)/2 non-base case nodes at depth D-1, each has non-recursive cost 1.
® So:
D-2
n-~-B _ n—B
W (n) = ;(n—2d)+ . —n(D-1)-2°" -1+ .
=0

Since (2D —2B)+ B =n,thatis B = 2P —n
So, W(n) =nD -2" +1
27 B

Let — =1+—=0,thenl=a <2, D=lgn+lga
n n

So,W(n)=nlgn—-(a-lgo)n+1

® [nlg(n)-n+1] < number of comparison < [nlg(n)-0.914n |

The MergeSort D&C

® Counting the number of inversions
e Brute force: O(n2)
e Can we use divide & conquer
e In O(nlogn)=>combination in O(n)
® MergeSort as the carrier
e Sorted subarrays
e AJO..k-1] and B[0..m-1]
e Compare the left and right elements

e Ali] v.s. B[j]

The MergeSort D&C

Ali] BIj]
A[O] A[k-1] B|O] B[m-1]

The MergeSort D&C

® The nearest pair

Line L

e N nodes on a plane ' .
52 i

* The pair with the minimum distance 52 1| r

® The MergeSort D&C Boxes /"' “““““““
o T(n)=2T(n/2)+f(n)

« f(n) must be O(n) .’ 5

5 5

e How?

The MergeSort D&C

® Max-sum subsequence

g

® Maxima on a plane

® Finding the frequent element

® Integer/matrix multiplication e

T(n)eO(nlogn)
o ...

Lower Bounds for
Comparison-based Sorting

® Upper bound, e.g., worst-case cost

* For any possible input, the cost of the specific
algorithm A is no more than the upper bound

e Max{cost(i) | i is an input}
® Lower bound, e.g., comparison-based sorting

* For any possible (comparison-based) sorting algorithm
A, the worst-case cost is no less than the lower bound

 Min{worst-case(a) | a is an algorithm}

2-1ree

® 2-Tree e Common Binary Tree

internal nodes

® o

ngxct:ﬁli‘lr:jalalqoilese Both left and right
y typ children of these nodes
are empty tree

Decision Tree for Sorting

Internal node
An example for n=3 1:2

External node

® Decision tree is a 2-tree (Assuming no same keys)

® The action of Sort on a particular input corresponds to
following on path in its decision tree from the root to a
leaf associated to the specific output

Characterizing the
Decision ITree

® For a seguence of n distinct elements, there are n!
different permutation

e S0, the decision tree has at least n! leaves, and
exactly n! leaves can be reached from the root.

e S0, for the purpose of lower bounds evaluation,
we use trees with exactly n! leaves.

® The number of comparison done in the worst case
Is the height of the tree.

® The average number of comparison done is the
average of the lengths of all paths from the root to
a leaf.

Lower Bound for Worst
Case

e Theorem: Any algorithm to sort n items by
comparisons of keys must do at least [Ign! | , or

approximately | nlgn-1.443n | , key comparisons in the

worst case.

Note: Let L=n!, which is the number of leaves, then L<2h,
where h is the height of the tree, thatish= [IgL | = [Ign! |

For the asymptotic behavior:

lg(n!) = lg[n(n - 1)...(g)] > lg(g) g glg(g) =0O(nlgn)

derived using: lgn!= E 1g(/)
T=1

External Path Length (EPL)

® The EPL of a 2-tree t is defined as follows:
Base case] 0 for a single external node

Recursion] t is non-leaf with sub-trees L and
R, then the sum of:

* the external path length of L;
* the number of external node of L;
* the external path length of R;
* the number of external node of R;

More Balanced 2-tree,
Less EPL

‘ ‘ Guess and prove:

=
/ { \Ievel k / \
6& level k+1

level /-1 {
Q level &

More Balanced 2-tree,
Less EPL

‘ ‘ Guess and prove:

=

/ ‘ \Ievel k / \
6& level Fk+1
level h-1 {

Q level h

Assuming that /-k>1, when calculating epl, h+h+k is replaced by
(h-1)+2(k+1). The net change in epl is k-h+1<0, that is, the ep/
decreases.

So, more balanced 2-tree has smaller epl.

Properties of EPL

® Let 7 is a 2-tree, then the ep/ of ¢ Is the sum of
the paths from the root to each external node.

e epl =mlg(m), where m 1s the number of external nodes
n ¢
o epl=epl;+eplp+m= m1g(m;)+mzplg(mz)+m,
o note AX)+/y)=2/((x+Yy)/2) for f(x)=xlgx
° SO,
epl = 2((m;+mp)/2)g((m;+mp)/2)+m = m(lg(m)-1)+m
=mlgm.

Lower Bound for Average
Behavior

® Since a decision tree with L leaves is a 2-tree, the

. [
average path length from the root to a leaf is e

L
e Recall that ep/ = LIg(L).

e Theorem: The average number of comparison done
by an algorithm to sort n items by comparison of
keys is at least Ig(n!), which is about nlgn-1.443n.

MergeSort Has Optimal
Average Performance

® The average number of comparisons done by
an algorithm to sort » items by comparison of
keys Is at least about nlgn-1.443n

® The worst complexity of MergeSort is in O(nlgn)

® But, the average performance can not be
worse than the worst case performance.

® So, MergeSort is optimal as for its average
performance.

Thank youl!
Q&A

