Introduction to

Algorithm Design and Analysis

[07] Selection

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University

https://ics.nju.edu.cn/~xjw/

INn the last class ...

® MergeSort
e \Worst-case analysis of MergeSort

® Lower Bounds for comparison-based sorting
 Worst-case

e Average-case

The Selection

® Selection - warm-ups
* Finding max and min
* Finding the second largest key
® Adversary argument and lower bound
® Selection - select the median
 Expected linear time
 Worst-case linear time

® A Lower Bound for Finding the Median

The Selection Problem

® Problem Definition

e Suppose E is an array containing n elements with
keys from some linearly order set, and let k be an
integer such that 1<=k<=n. The selection problem
Is to find an element with the kth smallest key in E.

® Special cases

Selection
e Find the max/min: k=n or k=1 V.S.

Searching

e Find the median (k=n/2)

Lower Bound of Finding
the Max

® For any algorithm A that can compare and copy numbers
exclusively, in the worst case, A cannot do fewer than n-1
comparisons to find the largest entry in an array with n

entries.

* Proof: an array with n distinct entries is assumed. We can
exclude a specific entry from being the largest entry only
after it is determined to be “loser” to at least one entry.
S0, n-1 entries must be “losers” in comparisons done by
the algorithm. However, each comparison has only one
loser, so at least n-1 comparisons must be done.

Decision Tree and
Lower Bound

e Since the decision tree for the selection

problem m

Ust have at least n leaves, the

height of tr

e tree is at least [logn]. It’s not a

good lower bound.

Example: n=4

A more powerful tool for
analysis is necessary:
adversary argument

V

There are more than 7 leaves!
In fact, 21 leaves at least.

FINnding max and min

® The strategy

e Pair up the keys, and do n/2 comparisons (if n odd, having E[n]
uncompared);

* Doing findMax for larger key set and findMin for small key set
respectively (if n odd, E[n] included in both sets)

® Number of comparisons

e Forevennin/2 +2n/2—-1)=3n/2-2
e Foroddn:(n—1)/2+2((n—-1)/24+1—-1)=[3n/2] — 2

How to prove this lower bound? Adversary Argument!

Unit of Information

® Max and Min

* That x is max can only be known when it is sure that
every key other than x has lost some comparison.

 That y is min can only be known when it is sure that
every key other than y has win some comparison.

® Each win or loss Is counted as one unit of information

* Any algorithm must have at least 2n-2 units of
information to be sure of specitying the max and min.

Adversary Strategy

Status of keys x and y Units of new
Compared by an algorithm Adversary response New status mnformation
N,N x>y W,L 2
W,N or WL,N x>y W,L or WL,L 1
LN x<y LW 1
W,W x>y W,WL 1
L,L x>y WL,L 1
W,L or WL,L or W,WL x>y No change 0
WL,WL Consistent with No change 0
Assigned values

The principle: let the key win if it never lose, or, let the key lose if it never win, and
change one value if necessary.

Lower Bound by the
Adversary Argument

® Construct an input to force the algorithm to do more
comparisons as possible

* To give away as few as possible units of new information
with each comparison.

* |t can be achieved that 2 units of new information are given away
only when the status is N,N.

* |tis always possible to give adversary response for other status
so that at most one new unit of information is given away, without

any inconsistencies.

® So, the Lower Bound is n/2+n-2 (for even n)
gx2+(n—2)><1=2n—2

Find the 2nd Largest Key

® Brute force - using FindMax twice

* Need 2n-3 comparisons.
® For a better algorithm

e Collect some useful information from the first FindMax
® Observations

* The key which loses to a key other than max cannot be the
ond |argest key.

e To check “whether you lose to max?”

Tournament for the 2nd
Largest Key

The length of the longest path is
rlogn—| , as many as those compared
to max at most.

Larger key
bubbles up

/A

X, IS max

@ Only x;, X5, X5, X; may be
the second largest key.

Analysis of Finding the 2n°

® Any algorithm that finds secondLargest must also
find max before. (n-1)

® The secondLargest can only be in those which lose
directly to max.

® On its path along which bubbling up to the root of
tournament tree, max beat [log n| keys at most.

® Pick up secondLargest ([logn] — 1)

@ Total cost: n + |logn| — 2

Lower Bound by Adversary

® Theorem

* Any algorithm (that works by comparing keys) to find
the second largest in a set of n keys must do at least

n+ |logn| — 2 comparisons in the worst case.

® Proof

* There is an adversary strategy that can force any
algorithm that finds secondlLargest to compare max

to [log n| distinct keys.

Weighted Key

® Assigning a weight w(x) to each key

e The Initial values are all 1.

¢ Adversary Strategy Note: for one comparison, the

weight increasing is no more than
doubled.

Case dversary reply Updating of weights

w(x)>w(y) x>y w(x)=w(x)+w(y); w(y):=0

w(x)=w(y)>0 x>y w(x):=w(x)+w(y); w(y):=0

w(y)>w(x) y>x w(y)=w(x)+w(y); wx):=0

w(x)=w(y)=0 Consistent with previous replies No change

Zero loss

Lower Bound by Adversary:
Detalls

® Note: the sum of weights is always n.

® L et x iIs max, then x is the only nonzero weighted key,
that is w(x)=n.

e By the adversary rules:w (x) < 2w,_(x)

® | et K be the number of comparisons x wins against
previously undefeated keys:

n = wg(x) < ZKWO(x) =2k

® So,K < [logn]

Tracking the Losers to MAX

@ To be filled with
Building a heap winners

structure of 2n-1 entries,

using n-1 extra space @ . /
© @ » C
OO ®O6O G

C’g; (%) (29 (2 ne\nries in input

Finding the Median:
the Strategy

® Observation

e |f we can partition the problem set of keys into 2
subsets: S1, S2, such that any key in S1 is smaller
that that of S2, the median must located in the set
with more elements.

® Divide-and-Conquer

e Only one subset is needed to be processed
recursively.

Adjusting the Rank

® The rank of the median (of the original set) in the
subset considered can be evaluated easily.

® An example
o | et N=255
e The rank of median we want is 128

e Assuming [S1|=96, [So|=159

e Then, the original median is in So, and the new rank is
128-96=32

Partitioning: Larger and
Smaller

® Dividing the array to be considered into two
subsets: “small” and “large”, the one with more
elements will be processed recursively.

A “bad” pivot will give a
[splitPoint]: pivot very uneven partition!

000000 00000000

in thi for any element in this
for any element in this small large y .
segment, the key is segment, the key is not
less than pivot. Tobe processed recursively less than pivot.

Selection: the Algorithm

® Input: S, a set of n keys; and k, an integer such thatl < k£ < n.
® Output: The kth smallest key in S.

® Note: Median selection is only a special case of the algorithm, with

k= [n/2].
® Procedure
® Element select(SetOfElements S, int k)
e if |S|<=5 return direct solution; else

Key issue:
o Constructing the subsets S,and S,, How to construct the partition?

e Processing one of S,,S, with more elements, recursively.

Partition improved:
the Strategy

greater than

the median All the elements are put in groups of 5
o\\ ° ° ° o o
less than A
the median e O o B " e ©
of medians \ __ -m~ \
e O e O Medians
o o C(° o\
%k
<m D greater than
® \. o [® the median
N
less than

the median

Constructing the Partition

® Find the m*, the median of medians of all the
groups of 5, as illustrated previously.

® Compare each key in sections A and D to m*, and

e LetS; =CU {x|[x€AUD and x < m*}

o LetS, = BU {x|x€AUD and x > m™*}(m*is
to be used as the pivot for the partition)

Divide and Conquer

e if (k=|S,|+1) return m*;
e else if (k<=|S,|) return select(S,,k); //recursion

e else return select(S,,k-|S,|-1); //recursion

Analysis

* For simplicity:

o Assuming n=5(2r+1) for all calls of select.

o n

/

/

Finding the median
in every group of 5

Finding the median

of the medians

n The extreme case: all
) T "(g) +4r +W(Tr + 2& the elements in AUD
\ in one subset.

Comparing all the elements
in AUD with m*

* Note: ris about n/10, and 0.7n+2 is about 0.7n, so

W(n)<l.6n+W(0.2n)+ W (0.7n)

Worst Case Complexity
of Select

W(n) ’ 1.6n 1.6n

PN

W(.2n) | 1.6(.2n) W(.7n) |1.6(.7n) 1.6(. 9)n

[\ VAN

W(.04n) |1.6(.04n) | | W(.14n) | 1.6(.14n) WA 14n) 1.6(.14n) | | W(. 49n)|16(49n)

S\ /SN /N \

W(.23n) || W(.2%(.7)n) || W(.2%(.7)n) || W(.2(.7)?n) || W(.2%(.7)n) || W(.2(.7)?n) || W(.2(.7)%n) || W(.23n)

Note: Row sums is a decreasing geometric series, so
W(n) e®(n)

Relation to Median

® Observation

e Any algorithm of selection must know the relation
of every element to the median.

The adversary makes you wrong in either case

Crucial Comparison

® A crucial comparison
e Establishing the relation of some x to the median.
® Definition (for a comparison involving a key x)

* Crucial comparison for x: the first comparison where
x>y, for some y=>median, or x<y for some
y<=median

* Non-crucial comparison: the comparison between x
and y where x>median and y<median, or vise versa

Adversary for Lower Bound

® Status of the key during the running of the Algorithm:
e |: Has been assigned a value larger than median
e S: Has been assigned a value smaller than median

* N: Has not yet been in a comparison

® Adversary rule: Comparands Adversary’s action

N,N one L, the another S
LN or N,L change Nto §
S,Nor N,S change Nto L

(In all other cases, just keep consistency)

Notes on the Adversary
Arguments

® All actions explicitly specified above make the
comparisons un-crucial.

e At least, (n-1)/2 L or S can be assigned freely.

* If there are already (n-1)/2 S, a value larger than median
must be assigned to the new key, and if there are already
(n-1)/2 L, a value smaller than median must be assigned
to the new key. The last assigned value is the median.

® S0, an adversary can force the algorithm to do (n-1)/2 un-
crucial comparisons at least(In the case that the algorithm
start out by doing (n-1)/2 comparisons involving two N.

Lower Bound for Selection
Problem

® Theorem:

* Any algorithm to find the median of n keys (for odd n) by
comparison of keys must do at least 3n/2-3/2 comparisons in the
worst case.

® Argument:
* There must be done n-1 crucial comparisons at least.

* An adversary can force the algorithm to perform as many as (n-1)/2
uncritical comparisons.

* Note: the algorithm can always start out by doing (n-1)/2
comparisons involving 2 N-keys, so, only (n-1)/2 L or S left for
the adversary to assign freely as the adversary rule.

Thank youl!
Q&A

