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In the last class …

• MergeSort 

• Worst-case analysis of MergeSort


• Lower Bounds for comparison-based sorting 

• Worst-case


• Average-case



The Selection
• Selection - warm-ups 

• Finding max and min


• Finding the second largest key


• Adversary argument and lower bound 

• Selection - select the median 

• Expected linear time


• Worst-case linear time


• A Lower Bound for Finding the Median



The Selection Problem
• Problem Definition 

• Suppose E is an array containing n elements with 
keys from some linearly order set, and let k be an 
integer such that 1<=k<=n. The selection problem 
is to find an element with the kth smallest key in E.


• Special cases 

• Find the max/min: k=n or k=1


• Find the median (k=n/2)

Selection

v.s.


Searching



Lower Bound of Finding

the Max

• For any algorithm A that can compare and copy numbers 
exclusively, in the worst case, A cannot do fewer than n-1 
comparisons to find the largest entry in an array with n 
entries. 

• Proof: an array with n distinct entries is assumed. We can 
exclude a specific entry from being the largest entry only 
after it is determined to be “loser” to at least one entry. 
So, n‐1 entries must be “losers” in comparisons done by 
the algorithm. However, each comparison has only one 
loser, so at least n‐1 comparisons must be done. 


•



Decision Tree and

Lower Bound

• Since the decision tree for the selection 
problem must have at least n leaves, the 
height of the tree is at least . It’s not a 
good lower bound.

⌈log n⌉



Finding max and min
• The strategy  

• Pair up the keys, and do n/2 comparisons (if n odd, having E[n] 
uncompared);


• Doing findMax for larger key set and findMin for small key set 
respectively (if n odd, E[n] included in both sets) 

• Number of comparisons 

• For even n: 


• For odd n:  


•

n/2 + 2(n/2 − 1) = 3n/2 − 2

(n − 1)/2 + 2((n − 1)/2 + 1 − 1) = ⌈3n/2⌉ − 2

How to prove this lower bound? Adversary Argument!



Unit of Information
• Max and Min 

• That x is max can only be known when it is sure that 
every key other than x has lost some comparison.


• That y is min can only be known when it is sure that 
every key other than y has win some comparison.


• Each win or loss is counted as one unit of information 

• Any algorithm must have at least 2n‐2 units of 
information to be sure of specifying the max and min. 


•



Adversary Strategy

The principle: let the key win if it never lose, or, let the key lose if it never win, and 
change one value if necessary.



Lower Bound by the 
Adversary Argument

• Construct an input to force the algorithm to do more 
comparisons as possible  

• To give away as few as possible units of new information 
with each comparison.


• It can be achieved that 2 units of new information are given away 
only when the status is N,N.


• It is always possible to give adversary response for other status 
so that at most one new unit of information is given away, without 
any inconsistencies. 


• So, the Lower Bound is n/2+n-2 (for even n) 
n
2

× 2 + (n − 2) × 1 = 2n − 2



Find the 2nd Largest Key
• Brute force - using FindMax twice 

• Need 2n‐3 comparisons. 


•For a better algorithm 

• Collect some useful information from the first FindMax 


•Observations 

• The key which loses to a key other than max cannot be the 
2nd largest key.


• To check “whether you lose to max?” 



Tournament for the 2nd 
Largest Key



Analysis of Finding the 2nd

• Any algorithm that finds secondLargest must also 
find max before.            (n-1) 

• The secondLargest can only be in those which lose 
directly to max.  

• On its path along which bubbling up to the root of 
tournament tree, max beat  keys at most. 

• Pick up secondLargest          

• Total cost:  

⌈log n⌉

(⌈log n⌉ − 1)

n + ⌈log n⌉ − 2



Lower Bound by Adversary
• Theorem  

• Any algorithm (that works by comparing keys) to find 
the second largest in a set of n keys must do at least 

 comparisons in the worst case.


• Proof  

• There is an adversary strategy that can force any 
algorithm that finds secondLargest to compare max 
to  distinct keys. 


•

n + ⌈log n⌉ − 2

⌈log n⌉



Weighted Key
•Assigning a weight w(x) to each key 

• The initial values are all 1. 


• Adversary strategy



Lower Bound by Adversary: 
Details

• Note: the sum of weights is always n. 

• Let x is max, then x is the only nonzero weighted key, 
that is w(x)=n. 

• By the adversary rules:  

• Let K be the number of comparisons x wins against 
previously undefeated keys:

 

• So,

wk(x) ≤ 2wk−1(x)

n = wK(x) ≤ 2Kw0(x) = 2K

K ≤ ⌈log n⌉



Tracking the Losers to MAX



Finding the Median:

the Strategy

• Observation  

• If we can partition the problem set of keys into 2 
subsets: S1, S2, such that any key in S1 is smaller 
that that of S2, the median must located in the set 
with more elements. 


•Divide‐and‐Conquer 

• Only one subset is needed to be processed 
recursively. 


•



Adjusting the Rank
• The rank of the median (of the original set) in the 

subset considered can be evaluated easily. 

• An example 

• Let n=255 


• The rank of median we want is 128 

• Assuming |S1|=96, |S2|=159 


• Then, the original median is in S2, and the new rank is 
128‐96=32 



Partitioning: Larger and 
Smaller

• Dividing the array to be considered into two 
subsets: “small” and “large”, the one with more 
elements will be processed recursively.



Selection: the Algorithm
• Input: S, a set of n keys; and k, an integer such that . 

• Output: The kth smallest key in S.  

• Note: Median selection is only a special case of the algorithm, with
. 

• Procedure  

• Element select(SetOfElements S, int k) 

• if |S|<=5 return direct solution; else 

• Constructing the subsets S1 and S2;


• Processing one of S1,S2 with more elements, recursively.

1 ≤ k ≤ n

k = ⌈n/2⌉

Key issue: 
How to construct the partition?



Partition improved:

the Strategy



Constructing the Partition

• Find the m*, the median of medians of all the 
groups of 5, as illustrated previously.  

• Compare each key in sections A and D to m*, and  

• Let 


• Let (m* is 
to be used as the pivot for the partition) 

S1 = C ∪ {x |x ∈ A ∪ D and x < m*}

S2 = B ∪ {x |x ∈ A ∪ D and x > m*}



Divide and Conquer

• if (k=|S1|+1) return m*;  

• else if (k<=|S1|) return select(S1,k); //recursion  

• else return select(S2,k-|S1|-1); //recursion 



Analysis



Worst Case Complexity

of Select



Relation to Median
•Observation 

• Any algorithm of selection must know the relation 
of every element to the median. 

The adversary makes you wrong in either case



Crucial Comparison
• A crucial comparison 

• Establishing the relation of some x to the median. 


• Definition (for a comparison involving a key x) 

• Crucial comparison for x: the first comparison where 
x>y, for some y=>median, or x<y for some 
y<=median


• Non‐crucial comparison: the comparison between x 
and y where x>median and y<median， or vise versa 



Adversary for Lower Bound
• Status of the key during the running of the Algorithm: 

• L: Has been assigned a value larger than median


• S: Has been assigned a value smaller than median


• N: Has not yet been in a comparison

• Adversary rule:



Notes on the Adversary 
Arguments

• All actions explicitly specified above make the 
comparisons un-crucial.  

• At least, (n‐1)/2 L or S can be assigned freely. 


• If there are already (n‐1)/2 S, a value larger than median 
must be assigned to the new key, and if there are already 
(n‐1)/2 L, a value smaller than median must be assigned 
to the new key. The last assigned value is the median. 


• So, an adversary can force the algorithm to do (n-1)/2 un-
crucial comparisons at least(In the case that the algorithm 
start out by doing (n-1)/2 comparisons involving two N. 



Lower Bound for Selection 
Problem

• Theorem:  

• Any algorithm to find the median of n keys (for odd n) by 
comparison of keys must do at least 3n/2‐3/2 comparisons in the 
worst case. 


• Argument:  

• There must be done n‐1 crucial comparisons at least. 


• An adversary can force the algorithm to perform as many as (n‐1)/2 
uncritical comparisons. 


• Note: the algorithm can always start out by doing (n‐1)/2 
comparisons involving 2 N‐keys, so, only (n‐1)/2 L or S left for 
the adversary to assign freely as the adversary rule. 



Thank you!

Q & A


