
Introduction to

Algorithm Design and Analysis

[08] logn search

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …
• Selection - warm up

• Max and min

• Second largest

• Selection - rank k (median)

• Expected linear time

• Worst-case linear time

• Adversary argument

• Lower bound

The Searching Problem
• Searching v.s. Selection

• Search for “Alice” or “Bob”

• The key itself matters

• Select the “rank 2” student

• The partial order relation matters

• Expected cost for searching

• Brute force case: O(n)

• Ideal case: O(1)

• Can we achieve O(logn)?

The Searching Problem
• Essential of searching

• How to organize the data to enable efficient search

• logn search

• Each search cuts off half of the search space

• How to organize the data to enable logn search

• logn search techniques

• Warmup

• Binary search over sorted sequences

• Balanced Binary Search Tree (BST)

• Red-black tree

Binary Search by Example

• Binary search for “24”

• Divide the search space

• Cut off half the space after each search

3 5 6 20 21 24 30 40 45 50

The sequence is
already sorted

1st 2nd3rd

Binary Search Generalized
• Peak-number

• Uni-modal array

• Least number not in the array

• Sorted array of natural numbers

• A[i]=i

• Sorted array of integers

Balanced Binary Search Tree
• Binary search tree (BST)

• Definitions and basic operations

• Definition of Red-Black Tree (RBT)

• Black height

• RBT operations

• Insertion into a red-black tree

• Deletion from a red-black tree

Binary Search Tree Revisited

40

20 60

30 50 80

30

20 80

40

60

50

Good balancing

Θ(logn)

Poor balancing

Θ(n)

Each node has a key, belonging to a linear ordered set

An inorder traversal produces a sorted list of the keys

In a properly drawn tree, pushing forward to get the ordered list.

Node Group
50

15 70

80

70

60 80

75

5 principal subtrees

As in 2-tree,
the number of
external node
is one more
than that of

internal node

10
25

20 40

30

60

65 75 90

Node group

Balancing by Rotation
50

15

The middle principal
subtree changes parent

10
25

20 40

30

The node group to be rotated
50

15

10

25

20

40

30

Root of the group
is changed

Red-Black Tree: Definition
• If T is a binary search tree in which each node has a color,

red or black, and all external nodes are black, then T is a
red-black tree if and only if:

• [Color constraint] No red node has a red child

• [Black height constraint] The black length of all external
paths from a given node u is the same (the black height of u)

• The root is black.

• Almost-red-black tree (ARB tree)

• Root is red, satisfying the other constraints.

Balancing is
under control

Recursive Definition of RBT

• Definition
• An external node is an RB0 tree, and the node is

black.

• A binary tree is an ARBh (h≥1) tree if:

• Its root is red, and

• Its left and right sub trees are each an RBh-1 tree.

• A binary tree is an RBh (h≥1) tree if:

• Its root is black, and

• Its left and right sub trees are each either an RBh-1 tree or
an ARBh tree.

(A red-black tree of black height h is denoted as RBh)

(1)

RBi and ARBi

20RB0

ARB1

(2)

(3) (4)

Red-Black Tree with

6 Nodes

20

40

20 60

50 8030

20

40

20 60

50 8030

20

30

20 60

50 80

40
Black edge

poorest balancing:

height(normal) is 4

Black-depth Convention
40

20 6050 8030

40

20

60

50 8030

30

20

60

50 8040

All with the same
largest black depth: 2

ARB Trees

Properties of Red-Black Tree
• The black height of any RBh tree or ARBh tree is well-defined and is h.

• Let T be an RBh tree, then:

• T has at least 2h-1 internal black nodes.

• T has at most 4h-1 internal nodes.

• The depth of any black node is at most twice its black depth.

• Let A be an ARBh tree, then:

• A has at least 2h-2 internal black nodes.

• A has at most (4h)/2-1 internal nodes.

• The depth of any black node is at most twice its black depth.

Well-defined Black Height
• That “the black height of any RBh tree or ARBh tree is well

defined” means the black length of all external paths from the
root is the same.

• Proof: induction on h
• Base case: h=0, that is RB0 (there is no ARB0)
• In ARBh+1, its two subtrees are both RBh. Since the root is red, the

black length of all external paths from the root is h, that’s the
same as its two subtrees.

• In RBh+1:
• Case 1: two subtrees are RBh’s

• Case 2: two subtrees are ARBh+1’s

• Case 3: one subtree is an RBh (black height=h), and the another

is an ARBh+1 (black height=h)

Bound on Depth of

Node in RBTree

• Let T be a red-black tree with n internal nodes. Then
no node has black depth greater than log(n+1),
which means that the height of T in the usual sense
is at most 2log(n+1).
• Proof:

• Let h be the black height of T. The number of

internal nodes, n, is at least the number of internal
black nodes, which is at least 2h-1, so h≤log(n+1).
The node with greatest depth is some external
node. All external nodes are with black depth h. So,
the depth is at most 2h.

Influences of Insertion

to an RBT

• Black height constraint:
• No violation if inserting a red node.

• Color constraint:

40

20 6050 8030

40

20 6050 8030

Critical clusters (external
nodes excluded), which

originated by color violation,
with 3 or 4 nodes

70
Inserting 70

Repairing 4-node

Critical Cluster

40

20 6050 8030

No new critical
cluster occurs,

inserting finished70

40

20

60

50 8030 70

Color flip:

Root of the critical
cluster exchanges

color with its subtrees

Repairing 4-node

Critical Cluster

2 more insertions
40

20

60

50 8030 70

New
critical

cluster with
3 nodes.
Color flip
doesn’t

work, why?

85 90

Critical cluster

40

20

60

50

80

30 70 85 90

Patterns of 3-node

Critical Cluster

L

LL

M

LR

R

RL RR

L

LL

M

LR

R

RL RR

L

LL

M

LR

R

RL RR

L

LL

M

LR

R

RL RR

DC

BA

Repairing 3-node

Critical Cluster

Root of the
critical cluster is
changed to M,
and the parent
ship is adjusted

accordingly

The incurred
critical cluster is

of pattern A

L

LL

M

LR

R

RL RR

A

40

20

60

50

80

30 70 85 90

Implementing Insertion:

Class

class RBTree

 Element root;

 RBTree leftSubtree;

 RBTree rightSubtree;

 int color; /*red, black*/;

 static class InsReturn

 public RBTree newTree;

 public int status /* ok, rbr, brb, rrb, brr */

Implementing Insertion:

Procedure

RBTree rbtInsert(RBtree oldRBtree, Element newNode)

 InsReturn ans = rbtIns(oldREtree, newNode);

 if(ans.newTree.color != black)

 ans.newTree.color = black;

 return ans.newTree;

Implementing Insertion:

Procedure

InsReturn rbtIns(RBtree oldRBtree, Element newNode)
 InsReturn ans, ansLeft, ansRight;
 if (oldRBtree = nil) then <Inserting simply>;
 else
 if (newNode.key < oldRBtree.root.key)
 ansLeft = rbtIns(oldRBtree.leftSubtree, newNode);
 ans = repairLeft(oldRBtree, ansLeft);
 else
 ansRight = rbtIns(oldRBtree.rightSubtree, newNode);
 ans = repairRight(oldRBtree, ansRight);
 return ans

Correctness of Insertion
• If the parameter oldRBtree of rbtIns is an RBh tree or an

ARBh+1 tree (which is true for the recursive calls on rbtIns),
then the newTree and status fields returned are one of the
following combinations:
• Status=ok, and newTree is an RBh or an ARBh+1 tree,

• Status=rbr, and newTree is an RBh,

• Status=brb, and newTree is an ARBh+1 tree,

• Status=rrb, and newTree.color=red, newTree.leftSubtree is

an ARBh+1 tree and newTree.rightSubtree is an RBh tree,

• Status=brr, and newTree.color=red, newTree.rightSubtree

is an ARBh+1 tree and newTree.leftSubtree is an RBh tree

• For those cases with red root, the color will be changed to

black, with other constraints satisfied by repairing
subroutines.

Deletion: Logical

and Structural

40

20

60

50

80

30 70 85 90

u: to be deleted logically π is parent of 𝜎

40

20

70

50

80

30 85 90

𝜎: tree successor of u, to be
deleted structurally, with
information moved into u

right subtree of
S, to replace S

π

After deletion

Deletion from RBT -
Examples

40

20

60

50

80

30 70 85 90

original tree

40

20

60

50

85

30 70 9080

u, π

50

20

60 80

30 70 85 90

u, π
40

40

20

60

50

80

30 70 9085
u, π

Deletion in RBT
40

20

60

50

80

30 70 85 90

To be deleted

40

20

70

50

80

30 85 90

The black height of π is
not well-defined!π

One deletion

black depth=1
black depth=2

Procedure of Red-Black
Deletion

• Do a standard BST search to locate the node to be
logically deleted, call it u

• If the right child of u is an external node, identify u as
the node to be structurally deleted.

• If the right child of u is an internal node, find the tree
successor of u, call it 𝜎, copy the key and information
from 𝜎 to u. (color of u not changed) Identify 𝜎 as the
node to be deleted structurally.

• Carry out the structural deletion and repair any
imbalance of black height.

Imbalance of Black Height
40

20

60

50

80

30 70 85 90

85

70 90

deleting 80
50

20 30

deleting 40

80

90

deleting 85

70 80

85 90

Black height has
to be restored

deleting 60

Analysis of Black Imbalance
• The imbalance occurs when:

• A black node is deleted structurally, and

• Its right subtree is black (external)

• The result is:

• An RBh-1 occupies the position of an RBh as required
by its parent, coloring it as a “gray” node.

• Solution:

• Find a red node and turn it black as locally as possible.

• The gray color might propagate up the tree.

Propagation of Gray Node

s

l

p

r

g s

l

p

r

g

s

l

p

rg

G-subtree gets well-defined
black height, but that is less

than that required by its parent

Map of the vicinity of g, the gray node

The pattern
for which

propagation
is needed

In the worst
case, up to
the root of

the tree, and
successful

Gray up

Repairing without
Propagation

s

b

p

rg

Deletion

Rebalance

group

Restructured
a

l

s

b

l

r

p

ag

Restructuring the deletion rebalance group:

Red p: form an RB1 or ARB2 tree

Black p: form an RB2 tree

4 principal subtrees, RBh-1

Repairing without
Propagation

s

b

p

rg

Deletion

Rebalance

group

Restructured
a

l

s

b

l

r

p

ag

Restructuring the deletion rebalance group:

Red p: form an RB1 or ARB2 tree

Black p: form an RB2 tree

4 principal subtrees, RBh-1

Complexity of

Operations on RBT

• With reasonable implementation

• A new node can be inserted correctly in a red-
black tree with n nodes in (logn) time in the
worst case.

• Repairs for deletion do O(1) structural
changes, but may do O(logn) color changes.

Thank you!

Q & A

