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In the last class …
• Selection - warm up 

• Max and min


• Second largest


• Selection - rank k (median) 

• Expected linear time


• Worst-case linear time


• Adversary argument 

• Lower bound



The Searching Problem
• Searching v.s. Selection 

• Search for “Alice” or “Bob”


• The key itself matters


• Select the “rank 2” student


• The partial order relation matters


• Expected cost for searching 

• Brute force case: O(n)


• Ideal case: O(1)


• Can we achieve O(logn)?



The Searching Problem
• Essential of searching 

• How to organize the data to enable efficient search


• logn search


• Each search cuts off half of the search space


• How to organize the data to enable logn search


• logn search techniques 

• Warmup


• Binary search over sorted sequences


• Balanced Binary Search Tree (BST)


• Red-black tree



Binary Search by Example

• Binary search for “24” 

• Divide the search space


• Cut off half the space after each search

3 5 6 20 21 24 30 40 45 50

The sequence is 
already sorted

1st 2nd3rd



Binary Search Generalized
• Peak-number 

• Uni-modal array


• Least number not in the array 

• Sorted array of natural numbers


• A[i]=i 

• Sorted array of integers



Balanced Binary Search Tree
• Binary search tree (BST) 

• Definitions and basic operations


• Definition of Red-Black Tree (RBT) 

• Black height


• RBT operations 

• Insertion into a red-black tree


• Deletion from a red-black tree



Binary Search Tree Revisited
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Node Group
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Balancing by Rotation
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Red-Black Tree: Definition
• If T is a binary search tree in which each node has a color, 

red or black, and all external nodes are black, then T is a 
red-black tree if and only if: 

• [Color constraint] No red node has a red child


• [Black height constraint] The black length of all external 
paths from a given node u is the same (the black height of u)


• The root is black.


• Almost-red-black tree (ARB tree) 

• Root is red, satisfying the other constraints.

Balancing is 
under control



Recursive Definition of RBT

• Definition 
• An external node is an RB0 tree, and the node is 

black.

• A binary tree is an ARBh (h≥1) tree if:

• Its root is red, and


• Its left and right sub trees are each an RBh-1 tree.


• A binary tree is an RBh (h≥1) tree if:

• Its root is black, and


• Its left and right sub trees are each either an RBh-1 tree or 
an ARBh tree.

(A red-black tree of black height h is denoted as RBh)



(1)

RBi and ARBi

20RB0
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(2)

(3) (4)



Red-Black Tree with 

6 Nodes
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Black-depth Convention
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Properties of Red-Black Tree
• The black height of any RBh tree or ARBh tree is well-defined and is h. 

• Let T be an RBh tree, then: 

• T has at least 2h-1 internal black nodes.


• T has at most 4h-1 internal nodes.


• The depth of any black node is at most twice its black depth.


• Let A be an ARBh tree, then: 

• A has at least 2h-2 internal black nodes.


• A has at most (4h)/2-1 internal nodes.


• The depth of any black node is at most twice its black depth.



Well-defined Black Height
• That “the black height of any RBh tree or ARBh tree is well 

defined” means the black length of all external paths from the 
root is the same. 

• Proof: induction on h 
• Base case: h=0, that is RB0 (there is no ARB0) 
• In ARBh+1, its two subtrees are both RBh. Since the root is red, the 

black length of all external paths from the root is h, that’s the 
same as its two subtrees. 

• In RBh+1: 
• Case 1: two subtrees are RBh’s

• Case 2: two subtrees are ARBh+1’s

• Case 3: one subtree is an RBh (black height=h), and the another 

is an ARBh+1 (black height=h)



Bound on Depth of 

Node in RBTree

• Let T be a red-black tree with n internal nodes. Then 
no node has black depth greater than log(n+1), 
which means that the height of T in the usual sense 
is at most 2log(n+1). 
• Proof:

• Let h be the black height of T. The number of 

internal nodes, n, is at least the number of internal 
black nodes, which is at least 2h-1, so h≤log(n+1). 
The node with greatest depth is some external 
node. All external nodes are with black depth h. So, 
the depth is at most 2h.



Influences of Insertion

to an RBT

• Black height constraint: 
• No violation if inserting a red node.


• Color constraint:
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with 3 or 4 nodes
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Repairing 4-node

Critical Cluster
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Repairing 4-node

Critical Cluster
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Patterns of 3-node
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Repairing 3-node

Critical Cluster

Root of the 
critical cluster is 
changed to M, 
and the parent 
ship is adjusted 

accordingly

The incurred 
critical cluster is 

of pattern A
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Implementing Insertion:

Class

class RBTree

    Element root;

    RBTree leftSubtree;

    RBTree rightSubtree;

    int color; /*red, black*/;

  

  static class InsReturn

      public RBTree newTree;

      public int status /* ok, rbr, brb, rrb, brr */



Implementing Insertion:

Procedure

RBTree rbtInsert(RBtree oldRBtree, Element newNode)

    InsReturn ans = rbtIns(oldREtree, newNode);

    if(ans.newTree.color != black)

        ans.newTree.color = black;

    return ans.newTree;



Implementing Insertion:

Procedure

InsReturn rbtIns(RBtree oldRBtree, Element newNode)
    InsReturn ans, ansLeft, ansRight; 
    if (oldRBtree = nil) then <Inserting simply>; 
    else 
        if (newNode.key < oldRBtree.root.key) 
            ansLeft = rbtIns(oldRBtree.leftSubtree, newNode); 
            ans = repairLeft(oldRBtree, ansLeft);  
        else 
            ansRight = rbtIns(oldRBtree.rightSubtree, newNode); 
            ans = repairRight(oldRBtree, ansRight); 
    return ans 



Correctness of Insertion
• If the parameter oldRBtree of rbtIns is an RBh tree or an 

ARBh+1 tree (which is true for the recursive calls on rbtIns), 
then the newTree and status fields returned are one of the 
following combinations: 
• Status=ok, and newTree is an RBh or an ARBh+1 tree,

• Status=rbr, and newTree is an RBh,

• Status=brb, and newTree is an ARBh+1 tree,

• Status=rrb, and newTree.color=red, newTree.leftSubtree is 

an ARBh+1 tree and newTree.rightSubtree is an RBh tree,

• Status=brr, and newTree.color=red, newTree.rightSubtree 

is an ARBh+1 tree and newTree.leftSubtree is an RBh tree

• For those cases with red root, the color will be changed to 

black, with other constraints satisfied by repairing 
subroutines.



Deletion: Logical 

and Structural
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Deletion from RBT - 
Examples
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Deletion in RBT
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Procedure of Red-Black 
Deletion

• Do a standard BST search to locate the node to be 
logically deleted, call it u 

• If the right child of u is an external node, identify u as 
the node to be structurally deleted. 

• If the right child of u is an internal node, find the tree 
successor of u, call it 𝜎, copy the key and information 
from 𝜎 to u. (color of u not changed) Identify 𝜎 as the 
node to be deleted structurally. 

• Carry out the structural deletion and repair any 
imbalance of black height.



Imbalance of Black Height
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Analysis of Black Imbalance
• The imbalance occurs when: 

• A black node is deleted structurally, and


• Its right subtree is black (external)


• The result is: 

• An RBh-1 occupies the position of an RBh as required 
by its parent, coloring it as a “gray” node.


• Solution: 

• Find a red node and turn it black as locally as possible.


• The gray color might propagate up the tree.



Propagation of Gray Node
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Repairing without 
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Complexity of 

Operations on RBT

• With reasonable implementation 

• A new node can be inserted correctly in a red-
black tree with n nodes in (logn) time in the 
worst case.


• Repairs for deletion do O(1) structural 
changes, but may do O(logn) color changes.



Thank you!

Q & A


