Introduction to

Algorithm Design and Analysis

[08] logn search

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University



https://ics.nju.edu.cn/~xjw/

INn the last class ...

® Selection - warm up
e Max and min
e Second largest

® Selection - rank k (median)
 Expected linear time
 Worst-case linear time

® Adversary argument

e | ower bound



The Searching Problem

® Searching v.s. Selection

e Search for “Alice” or “Bob”

e The key itself matters

e Select the “rank 2” student

e The partial order relation matters
® Expected cost for searching
e Brute force case: O(n)
e |deal case: O(1)

e Can we achieve O(logn)?



The Searching Problem

® Essential of searching
e How to organize the data to enable efficient search

* logn search
 Each search cuts off half of the search space

* How to organize the data to enable logn search
® logn search techniques

e Warmup

* Binary search over sorted sequences

e Balanced Binary Search Tree (BST)

e Red-black tree



Binary Search by Example

® Binary search for “24”
* Divide the search space

e Cut off half the space after each search

qst 3rd ond

The sequence is
already sorted



Binary Search Generalized

® Peak-number

e Uni-modal array
® Least number not in the array

e Sorted array of natural numbers
® Ali]=i

e Sorted array of integers



Balanced Binary Search Tree
® Binary search tree (BST)

e Definitions and basic operations
® Definition of Red-Black Tree (RBT)
e Black height
® RBT operations
* Insertion into a red-black tree

e Deletion from a red-black tree



Binary Search Tree Revisited

Good balancing Poor balancing
O(logn)

In a properly drawn tree, pushing forward to get the ordered list.

Each node has a key, belonging to a linear ordered set

An inorder traversal produces a sorted list of the keys



As In 2-tree,

N Ode G rOu p the number of

external node

IS One more
Node group than that of

Internal node

/
©
®

5 principal subtrees



Balancing by Rotation

The node group to be rotated

Root of the group
IS changed

The middle principal
subtree changes parent



Red-Black Tree: Definition

® |[f T is a binary search tree in which each node has a color,
red or black, and all external nodes are black, then T is a
red-black tree if and only if:

e [Color constraint] No red node has a red child

e [Black height constraint] The black length of all external
paths from a given node u is the same (the black height of u)

* The root is black. \
Balancing is
® Almost-red-black tree (ARB tree) under control

 Root is red, satisfying the other constraints.



Recursive Definition of RBT

(A red-black tree of black height h is denoted as RB4)
® Definition

e An external node Is an RBg tree, and the node is
black.

e A binary tree is an ARBh (h=1) tree if:

e |ts root is red, and

e |ts left and right sub trees are each an RBh-1 tree.

e A binary tree is an RBhn (h=1) tree if:

e |ts root Is black, and

e |ts left and right sub trees are each either an RBn-1 tree or
an ARBh tree.



RBi and ARB;

A

(1)

"o e




Red-Black Tree with
6 Nodes

poorest balancing:
height(normal) is 4

Black edge




Black-depth Convention

All with the same

largest black depth: 2

60

30
20 40 50 80
40 60
20 30 50 80 i

ARB Trees



Properties of Red-Black Tree

® The black height of any RBn tree or ARBh tree is well-defined and is h.
® Let T be an RB tree, then:

e T has at least 2h-1 internal black nodes.

T has at most 4h-1 internal nodes.

 The depth of any black node is at most twice its black depth.
® Let A be an ARBh tree, then:

e A has at least 2h-2 internal black nodes.

e A has at most (4")/2-1 internal nodes.

 The depth of any black node is at most twice its black depth.



Well-defined Black Height

® That “the black height of any RBnh tree or ARBh tree is well
defined” means the black length of all external paths from the
root is the same.

® Proof: induction on h
® Base case: h=0, that is RBo (there is no ARBy)

® |In ARB.1, its two subtrees are both RBh. Since the root is red, the
black length of all external paths from the root is h, that’s the
same as its two subtrees.

® In RBh:1:
e Case 1: two subtrees are RBh’s
e Case 2: two subtrees are ARBh:1’s

e Case 3: one subtree is an RBh (black height=h), and the another
is an ARBH+1 (black height=h)



Bound on Depth of
Node in RBTree

® Let T be a red-black tree with n internal nodes. Then
no node has black depth greater than log(n+1),

which means that the height of T in the usual sense
Is at most 2log(n+1).

e Proof:

e Let h be the black height of T. The number of
internal nodes, n, is at least the number of internal
black nodes, which is at least 2"-1, so h<log(n+1).
The node with greatest depth is some external

node. All external nodes are with black depth h. So,
the depth is at most 2h.



Influences of Insertion
toan RBT

® Black height constraint:

 No violation if inserting a red node.

® Color constraint: Critical clusters (external
nodes excluded), which

originated by color violation,

- with 3 or 4 nodes

Inserting 70*




Repairing 4-node
Critical Cluster

No new critical
cluster occurs,
iInserting finished

Color flip:
Root of the critical
cluster exchanges
color with its subtrees




Repairing 4-node
Critical Cluster

2 more insertions

40 Critical cluster

20 30 80 85

New
critical
cluster with

3 nodes.
Color flip
doesn’t
work, why?




Patterns of 3-node

Critical Cluster
P e

C D
0% e
LL LR RL 213




Repairing 3-node
Critical Cluster

Root of the
critical cluster is
changed to M,
and the parent
ship is adjusted
accordingly

The incurred
critical cluster is
of pattern A




Implementing Insertion:
Class

class RBlree
Element root;
RBTree leftSubtree;
RBTree rightSubtree;
int color; /*red, black®/;

static class InsReturn
public RBTree newlree;
public int status /* ok, rbr, brb, rrb, brr */



Implementing Insertion:
Procedure

RBTree rbtinsert(RBtree oldRBtree, Element newNode)
InsReturn ans = rbtins(oldREtree, newNode);
if(ans.newTree.color |= black)

ans.new Iree.color = black;
return ans.newlree;



Implementing Insertion:
Procedure

InsReturn rbtins(RBtree oldRBtree, Element newNode)
InsReturn ans, ansLeft, ansRight;
if (0ldRBtree = nil) then <Inserting simply>;

else
if (newNode.key < oldRBtree.root.key)

ansLeft = rbtins(oldRBtree.leftSubtree, newNode);
ans = repairLeft(oldRBtree, ansLeft);

else
ansRight = rbtins(oldRBtree.rightSubtree, newNode);

ans = repairRight(oldRBtree, ansRight),
return ans



Correctness of Insertion

® |f the parameter oldRBtree of rbtins is an RBn tree or an
ARBh+1 tree (which is true for the recursive calls on rbtins),
then the newTree and status fields returned are one of the
following combinations:

e Status=ok, and newTree is an RBh or an ARBh.+1 tree,
e Status=rbr, and newTree is an RBh,
e Status=brb, and newTree is an ARBh.1 tree,

e Status=rrb, and newTree.color=red, newTree.leftSubtree is
an ARBn+1 tree and newTree.rightSubtree is an RBh tree,

o Status=brr, and newTree.color=red, newTree.rightSubtree
is an ARBn+1 tree and newTree.leftSubtree is an RBn tree

® For those cases with red root, the color will be changed to
black, with other constraints satisfied by repairing
subroutines.



Deletion: Logical

and Structural

o: tree successor of u, to be right subtree of

deleted structurally, with S, to replace S
iInformation moved into u

85

o

After deletion



Deletion from RBT -

Examples

! BURCERSRRECE L e TEEEEEEUEP PR LR

u, T |



Deletion in RBT
o ve accted N§

40 60

* The black height of m is
not well-defined!

black depth=1
black depth=2

One deletion




Procedure of Red-Black
Deletion

® Do a standard BST search to locate the node to be
logically deleted, call it u

® If the right child of u is an external node, identify u as
the node to be structurally deleted.

® |f the right child of u is an internal node, find the tree
successor of u, call it o, copy the key and information

from o to u. (color of u not changed) Identify o as the
node to be deleted structurally.

® Carry out the structural deletion and repair any
Imbalance of black height.



Imbalance of Black Height

deleting 80

deleting 40 Black height has

to be restored

————

Pk

R~

deleting 60

---------

deleting 85



Analysis of Black Imbalance

® The imbalance occurs when:
* A black node is deleted structurally, and
* |ts right subtree is black (external)

® The result is:

* An RBn-1 occupies the position of an RBh as required
by its parent, coloring it as a “gray” node.

® Solution:
* Find a red node and turn it black as locally as possible.

* The gray color might propagate up the tree.



Propagation of Gray Node

The pattern
for which
propagation
IS heeded

Gray up* In the worst
case, up to

the root of
the tree, and
successful

Map of the vicinity of g, the gray node

G-subtree gets well-defined

black height, but that is less
than that required by its parent




Repairing without
Propagation

Deletion
Rebalance

Restructured
4 principal subtrees, RBn-1

Restructuring the deletion rebalance group:

Red p: form an RB+1 or ARB:2 tree
Black p: form an RB2 tree




Repairing without
Propagation

Deletion
Rebalance

Restructured
4 principal subtrees, RBn-1

Restructuring the deletion rebalance group:

Red p: form an RB+1 or ARB:2 tree
Black p: form an RB2 tree




Complexity of
Operations on RBT

® With reasonable implementation

* A new node can be inserted correctly in a red-
black tree with n nodes in (logn) time in the
worst case.

e Repairs for deletion do O(1) structural
changes, but may do O(logn) color changes.



Thank youl!
Q&A



