
Introduction to

Algorithm Design and Analysis

[09] Hashing

Jingwei Xu

https://ics.nju.edu.cn/~xjw/

Institute of Computer Software

Nanjing University

https://ics.nju.edu.cn/~xjw/

In the last class …
• The searching problem
• “Architecture” of data

• logn search
• Binary search

• In a more general sense

• Red-black tree: balanced BST

• Definition

• Black height constraint for balance

• Color constraint for low maintenance cost

• Operation

• Insertion, deletion

Hashing
• The searching problem

• The ambition of hashing

• Hashing

• Brute force table: direct addressing

• Basic idea of hashing

• Collision Handling for Hashing

• Closed address hashing

• Open address hashing

• Amortized Analysis

• Array doubling

Cost for Searching
• Brute force

• O(n)

• Balanced BST

• O(logn)

• Hashing - almost constant time

• O(1+α)

• “Mission impossible”

• O(1)

Searching -

A Brute Force Approach

• Direct-address table

• Take into account the whole universe of keys

Direct-address Table
DIRECT-ADDRESS-SEARCH(T, k)

 return T[k]

DIRECT-ADDRESS-INSERT(T, x)

 T[key[x]] := x

DIRECT-ADDRESS-DELETE(T, x)

 T[key[x]] := NIL

Hashing: the Idea

Collision Handling:

Closed Address

Closed Address - Analysis
• Assumption - simple uniform hashing

• For j = 0, 1, 2, …, m-1, the average length of the list at
E[j] is n/m.

• The average cost for an unsuccessful search

• Any key that is not in the table is equally likely to hash
to any of the m address.

• Total cost Θ(1+n/m)

• The average cost to determine that the key is not in the list

e[h(k)] is the cost to search to the end of the list, which is n/m.

Closed Address - Analysis
• For successful search (assuming that xi is the ith element

inserted into the table, i = 1, 2, …, n)

• For each i, the probability of that xi is searched is 1/n.

• For a specific xi, the number of elements examined in a
successful search is t+1, where t is the number of elements
inserted into the same list as xi, after xi has been inserted

• How to compute t?

• Consider the construction process of the hash table.

1
n

n

∑
i=1

(1 + t)

Closed Address - Analysis
• For successful search: (assuming that xi is the ith

element inserted into the table, i = 1, 2, …, n)

• For each i, the probability of that xi is searched is 1/n.

• For a specific xi, the number of elements examined in
a successful search is t+1, where t is the number of
elements inserted into the same list as xi, after xi has
been inserted. And for any j, the probability of that xj is
inserted into the same list of xi is 1/m. So, the cost is:

Cost for
computing
hashing

1 +
1
n

n

∑
i=1

(1 +
n

∑
j=i+1

1
m

)
Expected number of
elements in front of
the searched one in
the same linked list.

Closed Address: Analysis

• The average cost of a successful search:

• Define α=n/m as load factor,

• The average cost of a successful search is:

1
n

n

∑
i=1

(1 +
n

∑
j=i+1

1
m) = 1 +

1
nm

n

∑
i=1

(n − i) = 1 +
1

nm

n−1

∑
i=1

i

= 1 +
n − 1
2m

= 1 +
α
2

−
α
2n

= Θ(1 + α)

Number of elements in front of the
searched one in the same linked list

Collision Handling:

Open Address

• All elements are stored in the hash table

• No linked list is used

• The load factor α cannot be larger than 1

• Collision is settled by “rehashing”

• A function is used to get a new hashing address for each
collided address

• The hash table slots are probed successively, until a valid location is

found.

• The probe sequence can be seen as a permutation of
(0,1,2,…,m-1)

Linear Probing: An Example

Commonly Used Probing
• Linear probing:

• Given an ordinary hash function h’, which is called an
auxiliary hash function, the hash function is: (clustering
may occur)

• Quadratic probing:

• Given auxiliary function h’ and nonzero auxiliary
constant c1 and c2, the hash function is: (secondary
clustering may occur)

• Double hashing:

• Given auxiliary functions h1 and h2, the hash function is:

h(k, i) = (h′ (k) + i) mod m(i = 0,1,...,m − 1)

h(k, i) = (h′ (k) + c1i + c2i2) mod m(i = 0,1,...,m − 1)

h(k, i) = (h1(k) + ih2(k)) mod m(i = 0,1,...,m − 1)

Equally Likely Permutations
• Assumption

• Each key is equally likely to have any of the m!
Permutations of (1,2,…,m) as its probe
sequence

• Note

• Both linear and quadratic probing have only m
distinct probe sequence, as determined by the
first probe

Analysis for

Open Address hashing

• The average number of probes in an unsuccessful
search is at most 1/(1-α) (α=n/m<1)

• Assuming uniform hashing

See [CLRS] p.1199, C.25

Analysis for

Open Address Hashing

• The average cost of probes in an successful search
is at most (α=n/m<1)

• Assuming uniform hashing

1
α

ln
1

1 − α

For your reference:

Half full: 1.387;

90% full: 2.559

Hash Function
• A good hash function satisfies the assumption of

simple uniform hashing

• Heuristic hashing functions

• The division method:

• The multiplication method:

• No single function can avoid the worst case Θ(n)

• So “universal hashing” is proposed.

• Rich resource about hashing function

• Gonnet and Baeza-Yates: Handbook of Algorithms and Data

Structures, Addison-Wesley, 1991.

h(k) = k mod m
h(k) = ⌊m(kA mod 1)⌋(0 < A < 1)

Array Doubling
• Cost for search in a hash table is Θ(1+α)

• If we can keep α constant, the cost will be Θ(1)

• What if the hash table is more and more loaded?

• Space allocation techniques such as array
doubling may be needed

• The problem of “unusually expensive” individual
operation

Looking at the Memory
Allocation

hashingInsert(HASHTABLE H, ITEM x)

 integer size = 0, num = 0;

 if size = 0 then allocate a block of size 1; size = 1;

 if num = size then

 allocate a block of size 2size;

 move all item into new table;

 size = 2size;

 insert x into the table;

 num = num + 1;

return Elementary insertion: cost 1

Insertion with
expansion: cost size

Worst-case Analysis
• For n execution of insertion operations

• A bad analysis: the worst case for one insertion is the
case when expansion is required, up to n

• So, the worst case cost is in O(n2)

• Note the expansion is required during the ith operation
only if i=2k, and the cost of the ith operation

Amortized Analysis - Why?

• Unusually expensive operations

• E.g., Insert-with-array-doubling

• Relation between expensive and usually
operations

• Each piece of the doubling cost corresponds
to some previous insert

Amortized Analysis - How?
• Amortized equation:

• amortized cost = actual cost + accounting cost

• Design goal for accounting cost

• In any legal sequence of operations, the sum of
the accounting costs is nonnegative

• The amortized cost of each operation is fairly
regular, in spite of the wide fluctuate possible
for the actual cost of individual operations

Array Doubling
• Why non-negative accounting cost?

• For any possible sequence of operations?

Amortized Actual Accounting
Insert (normal) 3 1 2

Insert (doubling) 3 k+1 -k+2

K is the number of elements upon doubling

Multi-pop Stack

Multi-pop Stack
• Why non-negative accounting cost?

• For any possible sequence of operations?

Amortized Actual Accounting
Push 2 1 1

Multi-pop 0 k -k

K is the number of elements upon multi-pop

Binary Counter

Binary Counter
• Why non-negative accounting cost?

• For any possible sequence of operations?

Amortized Actual Accounting
Set 1 2 1 1
Set 0 0 1 -1

Thank you!

Q & A

