Introduction to

Algorithm Design and Analysis

[09] Hashing

Jingwei Xu https://ics.nju.edu.cn/~xjw/ Institute of Computer Software Nanjing University

In the last class ...

- The searching problem
 - "Architecture" of data
- logn search
 - Binary search
 - In a more general sense
 - Red-black tree: balanced BST
 - Definition
 - Black height constraint for balance
 - Color constraint for low maintenance cost
 - Operation
 - Insertion, deletion

Hashing

- The searching problem
 - The ambition of hashing
- Hashing
 - Brute force table: direct addressing
 - Basic idea of hashing
- Collision Handling for Hashing
 - Closed address hashing
 - Open address hashing
- Amortized Analysis
 - Array doubling

Cost for Searching

- Brute force
 - O(n)
- Balanced BST
 - O(logn)
- Hashing almost constant time
 - O(1+α)
- "Mission impossible"
 - O(1)

Searching -A Brute Force Approach

- Direct-address table
 - Take into account the whole universe of keys

Direct-address Table

DIRECT-ADDRESS-SEARCH(T, k) return T[k] DIRECT-ADDRESS-INSERT(T, x) T[key[x]] := x DIRECT-ADDRESS-DELETE(T, x) T[key[x]] := NIL

Hashing: the Idea

Collision Handling: Closed Address

Closed Address - Analysis

- Assumption simple uniform hashing
 - For j = 0, 1, 2, ..., m-1, the average length of the list at E[j] is n/m.
- The average cost for an unsuccessful search
 - Any key that is not in the table is equally likely to hash to any of the m address.
 - Total cost Θ(1+n/m)
 - The average cost to determine that the key is not in the list e[h(k)] is the cost to search to the end of the list, which is n/m.

Closed Address - Analysis

- For successful search (assuming that x_i is the ith element inserted into the table, i = 1, 2, ..., n)
 - For each i, the probability of that x_i is searched is 1/n.
 - For a specific x_i, the number of elements examined in a successful search is t+1, where t is the number of elements inserted into the same list as x_i, after x_i has been inserted

$$\frac{1}{n} \sum_{i=1}^{n} (1+t)$$

- How to compute t?
 - Consider the construction process of the hash table.

Closed Address - Analysis

- For successful search: (assuming that x_i is the ith) element inserted into the table, i = 1, 2, ..., n
 - For each i, the probability of that x_i is searched is 1/n.
 - For a specific x_i, the number of elements examined in a successful search is t+1, where t is the number of elements inserted into the same list as x_i , after x_i has been inserted. And for any j, the probability of that x_j is inserted into the same list of x_i is 1/m. So, the cost is:

searched one in

same linked list.

Cost for
computing
$$- - - - 1 + \frac{1}{n} \sum_{i=1}^{n} (1 + \sum_{j=i+1}^{n} \frac{1}{m})$$
 elements in front of
the searched one in
the same linked list.

Closed Address: Analysis

- The average cost of a successful search:
 - Define α=n/m as load factor,
 - The average cost of a successful search is:

$$\frac{1}{n}\sum_{i=1}^{n} \left(1 + \sum_{i=i+1}^{n} \frac{1}{m}\right) = 1 + \frac{1}{nm}\sum_{i=1}^{n} (n-i) = 1 + \frac{1}{nm}\sum_{i=1}^{n-1} i$$
$$= 1 + \frac{n-1}{2m} = 1 + \frac{\alpha}{2} - \frac{\alpha}{2n} = \Theta(1+\alpha)$$

Number of elements in front of the searched one in the same linked list

Collision Handling: Open Address

- All elements are stored in the hash table
 - No linked list is used
 - The load factor α cannot be larger than 1
- Collision is settled by "rehashing"
 - A function is used to get a new hashing address for each collided address
 - The hash table slots are probed successively, until a valid location is found.
- The probe sequence can be seen as a permutation of (0,1,2,...,m-1)

Linear Probing: An Example

Commonly Used Probing

• Linear probing:

 Given an ordinary hash function h', which is called an auxiliary hash function, the hash function is: (clustering may occur)

 $h(k, i) = (h'(k) + i) \mod m(i = 0, 1, ..., m - 1)$

- Quadratic probing:
 - Given auxiliary function h' and nonzero auxiliary constant c_1 and c_2 , the hash function is: (secondary clustering may occur)

 $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m(i = 0, 1, ..., m - 1)$

- Double hashing:
 - Given auxiliary functions h_1 and h_2 , the hash function is: $h(k, i) = (h_1(k) + ih_2(k)) \mod m(i = 0, 1, ..., m - 1)$

Equally Likely Permutations

Assumption

 Each key is equally likely to have any of the m! Permutations of (1,2,...,m) as its probe sequence

Note

 Both linear and quadratic probing have only m distinct probe sequence, as determined by the first probe

Analysis for Open Address hashing

- The average number of probes in an unsuccessful search is at most 1/(1-α) (α=n/m<1)
 - Assuming uniform hashing

The probability of the first probed position being occupied is $\frac{n}{m}$, and that of the $j^{th}(j > 1)$ position occupied is $\frac{n-j+1}{m-j+1}$. So the probability of the number of probes no less than i will be:

$$\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \frac{n-2}{m-2} \cdot \dots \cdot \frac{n-i+2}{m-i+2} \le (\frac{n}{m})^{i-1} = \alpha^{i-1}$$

The the average number of probe is: $\sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}$

See [CLRS] p.1199, C.25

Analysis for Open Address Hashing

- The average cost of probes in an successful search is at most $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ (a=n/m<1)
 - Assuming uniform hashing

To search for the $(i + 1)^{th}$ inserted element in the table, the cost is the same as that for inserting it when there are just *i* elements in the table. At that time, $\alpha = \frac{i}{m}$. So the cost is $\frac{1}{1-\frac{i}{m}} = \frac{m}{m-i}$. So the average cost for a successful search is:

For your reference: Half full: 1.387; 90% full: 2.559

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i} = \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} \sum_{i=m-n+1}^{m} \frac{1}{i}$$

$$\leq \frac{1}{\alpha} \int_{m-n}^{m} \frac{dx}{x} = \frac{1}{\alpha} \ln \frac{m}{m-n} = \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$
90%

Hash Function

- A good hash function satisfies the assumption of simple uniform hashing
 - Heuristic hashing functions
 - The division method: $h(k) = k \mod m$
 - The multiplication method: $h(k) = \lfloor m(kA \mod 1) \rfloor (0 < A < 1)$
 - No single function can avoid the worst case $\Theta(n)$
 - So "universal hashing" is proposed.
 - Rich resource about hashing function
 - Gonnet and Baeza-Yates: Handbook of Algorithms and Data Structures, Addison-Wesley, 1991.

Array Doubling

- Cost for search in a hash table is $\Theta(1+\alpha)$
 - If we can keep a constant, the cost will be $\Theta(1)$
- What if the hash table is more and more loaded?
 - Space allocation techniques such as array doubling may be needed
- The problem of "unusually expensive" individual operation

Looking at the Memory Allocation

hashingInsert(HASHTABLE H, ITEM x) integer size = 0, num = 0; if size = 0 then allocate a block of size 1; size = 1; if num = size then Insertion with allocate a block of size 2size; expansion: cost size move all item into new table; size = 2size;insert x into the table; num = num + 1;Elementary insertion: cost 1 return

Worst-case Analysis

- For n execution of insertion operations
 - A bad analysis: the worst case for one insertion is the case when expansion is required, up to n
 - So, the worst case cost is in O(n²)
- Note the expansion is required during the ith operation only if i=2^k, and the cost of the ith operation

$$c_i = \begin{cases} i & \text{if } i-1 \text{ is exactly the power of } 2\\ 1 & otherwise \end{cases}$$

So the total cost is:
$$\sum_{i=1}^n c_i \leq n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j < n+2n = 3n$$

Amortized Analysis - Why?

- Unusually expensive operations
 - E.g., Insert-with-array-doubling
- Relation between expensive and usually operations
 - Each piece of the doubling cost corresponds to some previous insert

Amortized Analysis - How?

- Amortized equation:
 - amortized cost = actual cost + accounting cost
- Design goal for accounting cost
 - In any legal sequence of operations, the sum of the accounting costs is nonnegative
 - The amortized cost of each operation is fairly regular, in spite of the wide fluctuate possible for the actual cost of individual operations

Array Doubling

- Why non-negative accounting cost?
 - For any possible sequence of operations?

	Amortized	Actual	Accounting
Insert (normal)	3	1	2
Insert (doubling)	3	k+1	-k+2

K is the number of elements upon doubling

Multi-pop Stack

Amortized cost: push:2; pop, multipop: 0

Multi-pop Stack

- Why non-negative accounting cost?
 - For any possible sequence of operations?

	Amortized	Actual	Accounting
Push	2	1	1
Multi-pop	0	k	-k

K is the number of elements upon multi-pop

Binary Counter

Cost measure: bit flip

amortized cost: set 1: 2 set 0: 0

Binary Counter

- Why non-negative accounting cost?
 - For any possible sequence of operations?

	Amortized	Actual	Accounting
Set 1	2	1	1
Set 0	0	1	-1

Thank you! Q&A