Introduction to

Algorithm Design and Analysis

[09] Hashing

Jingwei Xu
https://ics.nju.edu.cn/~xjw/

Institute of Computer Software
Nanjing University

https://ics.nju.edu.cn/~xjw/

INn the last class ...

® The searching problem
e “Architecture” of data
® logn search

e Binary search
* In a more general sense

e Red-black tree: balanced BST
e Definition
* Black height constraint for balance
e (Color constraint for low maintenance cost
e Operation
 |nsertion, deletion

Hashing

® The searching problem
 The ambition of hashing
® Hashing
e Brute force table: direct addressing
e Basic idea of hashing
® Collision Handling for Hashing
e Closed address hashing
e Open address hashing
® Amortized Analysis

e Array doubling

Cost for Searching

® Brute force
e O(n)
® Balanced BST
* O(logn)
® Hashing - almost constant time
e O(1+q)
® “Mission impossible”
* O(1)

Searching -
A Brute Force Approach

® Direct-address table

e Take into account the whole universe of keys

key satellite data Direct-address Table

>\2 / DIRECT-ADDRESS-SEARCH(T, K)
> 3 return T[K]
DIRECT-ADDRESS-INSERT(T, x)
Tlkey[x]] := x

DIRECT-ADDRESS-DELETE(T, x)
=3 T[key[Xx]] := NIL

O .0 N N v B WY = O
n

Hashing: the ldea

quite large, but only a

Hash Table (in feasible size) small part is used in an
B0 application
- * Index distribution
ELL e Collision handling
A N @1
Hash -
__--"| Function Key Space
E[k] Vad (U)
H(x)=k
Value of a
A calculated specific key
array index for
the key
E[m-1]

Collision Handling:
Closed Address

Each address is a linked list

//////
~ 7
// -
_ 7
// e
~ e
~ 7
// //
e 7~
ko -~ X b ke k| Sk
e .- : 2 7
-7 - . Insert to the head of
kz./ - - |
the list

| |

Closed Address - Analysis

® Assumption - simple uniform hashing

e Forj=0,1,2, ..., m-1, the average length of the list at
E[j] is n/m.

® The average cost for an unsuccessful search

e Any key that is not in the table is equally likely to hash
to any of the m address.

e Total cost ©(1+n/m)

* The average cost to determine that the key is not in the list
e[h(k)] is the cost to search to the end of the list, which is n/m.

Closed Address - Analysis

® For successful search (assuming that x; is the ith element
inserted into the table,i=1, 2, ..., n)

e For each i, the probability of that x; is searched is 1/n.

e For a specific x;, the number of elements examined in a
successful search is t+1, where t is the number of elements
Inserted into the same list as x;, after xi has been inserted

1 n
—) 1+
S

® How to compute t?

e Consider the construction process of the hash table.

Closed Address - Analysis

® For successful search: (assuming that x; is the ith
element inserted into the table, i =1, 2, ..., n)

* For each i, the probability of that xi is searched is 1/n.

* For a specific xi, the number of elements examined in
a successful search is t+1, where i IS the number of
elements inserted into the same list as Xx;, after x; has
been inserted. And for any |, the pirobability of that x; is

inserted into the same list of x;j is 1/m. So, the cost is:

v Expected number of

Cost for -V | t front of
| , L elements In
computing — — -1 +— Z (1+ Z)l the searched one In

hashing j=i+ N the same linked list.

Closed Address: Analysis

® The average cost of a successful search:

e Define a=n/m as load factor,

* The average cost of a successful search is:

1 1 & L | 1 n—l.

n—1 a A
=1+ =14 =01 + a)
2m 2 2n

Number of elements in front of the
searched one in the same linked list

Collision Handling:
Open Address

® All elements are stored in the hash table
* No linked list is used
 The load factor a cannot be larger than 1
® Collision is settled by “rehashing”

e A function is used to get a new hashing address for each
collided address

* The hash table slots are probed successively, until a valid location is
found.

® The probe sequence can be seen as a permutation of
(0,1,2,...,m-1)

Linear Probing: An Example

Index H Hash function: h(x)=5x mod 8
0| 1776
|
- 1812
3| 1055 nashing
rehashing 4| 1492 hashing — 1945
Q 1812 |
6 1918 3 S
Rehash function: rh(j)=(j+1) mod 8
71 1945

chain of rehashings

Commonly Used Probing

® Linear probing:

* Given an ordinary hash function h’, which is called an
auxiliary hash function, the hash function is: (clustering
may occur)

h(k,i) = (h'(k) +i) mod m(i =0,1,....m — 1)
® Quadratic probing:

* Given auxiliary function h’ and nonzero auxiliary
constant c1 and co, the hash function is: (secondary
clustering may occur)

h(k,i) = (h'(k) + c;i + ¢,i*) mod m(i = 0,1,...,m — 1)
® Double hashing:

* Given auxiliary functions h1 and hg, the hash function is:
h(k, i) = (hy(k) + ih,(k)) mod m(i = 0,1,...m — 1)

Equally Likely Permutations

® Assumption

e Each key is equally likely to have any of the m!
Permutations of (1,2,...,m) as its probe
seguence

® Note

 Both linear and quadratic probing have only m
distinct probe sequence, as determined by the
first probe

Analysis for
Open Address hashing

® The average number of probes in an unsuccessful
search is at most 1/(1-a) (a=n/m<1)

 Assuming uniform hashing

n

The probability of the first probed position being occupied is -+, and

that of the j/"(j > 1) position occupied is :“l__';fl So the probability of

the number of probes no less than ¢ will be:

n n—1 n—2 n—1-+ 2

..... <(

m m—l.m—Q m—1+2

ﬁ)z‘—l e
m

o0 o0
e L e
The the average number of probe is: 2:1 o — Z:o o' =
i i=

See [CLRS] p.1199, C.25

Analysis for
Open Address Hashing

® The average cost of probes in an successful search

is at most lln 1 (a=n/m<1)

a |1—-—a«a
 Assuming uniform hashing

To search for the (i 4+ 1) inserted element in the table, the cost is the
same as that for inserting it when there are just ¢ elements in the table.

At that time, o = % So the cost is —+ = .

1— % m—
™m

~.

So the average cost for a successful search is:
For your reference:

Half full: 1.387;
90% full: 2.559

= m"’i 1 i”: 1
n‘~m-i n“~m-i o, 1
1=0 1=0 i=m—n-+1
1 [dr | m 1 1
s = 1 — —In
aj g & m 0 o -1 0

Hash Function

® A good hash function satisfies the assumption of
simple uniform hashing

* Heuristic hashing functions

e The division method: h(k) = k mod m

* The multiplication method: (k) = |m(kA mod 1)[|(0 < A < 1)
* No single function can avoid the worst case O(n)

e So “universal hashing” is proposed.

* Rich resource about hashing function

 Gonnet and Baeza-Yates: Handbook of Algorithms and Data
Structures, Addison-Wesley, 1991.

Array Doubling

® Cost for search in a hash table is O(1+a)
* |f we can keep a constant, the cost will be O(1)
® What if the hash table is more and more loaded?

 Space allocation techniques such as array
doubling may be needed

® The problem of “unusually expensive” individual
operation

Looking at the Memory
Allocation

hashinglnsert(HASHTABLE H, ITEM Xx)
integer size = 0, num = 0;
If size = 0 then allocate a block of size 1; size = 1;
If num = size then

allocate a block of size 2size; ~ Insertion with
move all item into new table; expansion: cost size
Size = 2Size;

Insert x into the table;

num=num+1; "o

y | ' .
return Elementary insertion: cost 1

Worst-case Analysis

® For n execution of insertion operations

* A bad analysis: the worst case for one insertion is the
case when expansion is required, up to n

* S0, the worst case cost is in O(n2)

® Note the expansion is required during the ith operation
only if i=2k, and the cost of the ith operation

l if + — 1 is exactly the power of 2
C, —
1 otherwise

og 7| 2] < n+2n = 3n

1 the tafal cact jee S . L
So the total cost is:) ., ¢; < n,—r—zjzo

Amortized Analysis - Why?

® Unusually expensive operations
e E.g., Insert-with-array-doubling

® Relation between expensive and usually
operations

 Each piece of the doubling cost corresponds
to some previous insert

Amortized Analysis - How?

® Amortized equation:
e amortized cost = actual cost + accounting cost
® Design goal for accounting cost

e In any legal sequence of operations, the sum of
the accounting costs is nonnegative

e The amortized cost of each operation is fairly
regular, in spite of the wide fluctuate possible
for the actual cost of individual operations

Array Doubling

® Why non-negative accounting cost?

e For any possible sequence of operations?

Amortized Actual Accounting
Insert (hormal) 3 1 2
Insert (doubling) 3 K+1 -K+2

K is the number of elements upon doubling

Multi-pop Stack

Pop: MultiPop:
Cost=min(s,?)

\
Push: A
Cost=1
S >t
)
_

Amortized cost: push:2; pop, multipop: 0

Multi-pop Stack

® Why non-negative accounting cost?

e For any possible sequence of operations?

Amortized Actual Accounting
Push 2 1
Multi-pop 0 K -K

K is the number of elements upon multi-pop

0O JON LN W — O

Pk ek ek e ek \O
N DN B W=

Binary Counter

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
0000I1T1T11
00010000

oo J B~ W —= O

16
18
19
22
23

Cost measure: bit flip

amortized cost:
set 1: 2
set 0: O

Binary Counter

® Why non-negative accounting cost?

e For any possible sequence of operations?

Amortized Actual Accounting
Set 1 2 T 1
Set 0 0] -1

Thank youl!
Q&A

